Deep learning inference of miRNA expression from bulk and single-cell mRNA expression
Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder archi...
Uložené v:
| Vydané v: | Journal of bioinformatics and computational biology Ročník 23; číslo 3; s. 2550009 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Singapore
01.06.2025
|
| Predmet: | |
| ISSN: | 1757-6334, 1757-6334 |
| On-line prístup: | Zistit podrobnosti o prístupe |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data. |
|---|---|
| AbstractList | Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data.Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data. Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data. |
| Author | Ripan, Rony Chowdhury Hu, Haiyan Li, Xiaoman Athaya, Tasbiraha |
| Author_xml | – sequence: 1 givenname: Rony Chowdhury orcidid: 0009-0003-1890-6409 surname: Ripan fullname: Ripan, Rony Chowdhury organization: Department of Computer Science, University of Central Florida, Orlando, Florida, USA – sequence: 2 givenname: Tasbiraha orcidid: 0000-0002-9482-9949 surname: Athaya fullname: Athaya, Tasbiraha organization: Department of Computer Science, University of Central Florida, Orlando, Florida, USA – sequence: 3 givenname: Xiaoman orcidid: 0000-0002-9209-458X surname: Li fullname: Li, Xiaoman organization: Burnett School of Biomedical Science, College of Medicine, University of Central Florida Orlando, Florida, USA – sequence: 4 givenname: Haiyan orcidid: 0000-0002-4580-5975 surname: Hu fullname: Hu, Haiyan organization: Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40717383$$D View this record in MEDLINE/PubMed |
| BookMark | eNpVkE1LxDAYhIOs6Lr6A7xIjl6qb743x2X9BFFQF_ZW0vSNFNu0Jhb037viCnqaOTwzDHNAJrGPSMgxgzPGJD9_As6s4QBcKQCw6x0yZUaZQgshJ3_8HtmXYJgRczElqwvEgbboUmziC21iwITRI-0D7ZrH-wXFjyFhzk0faUh9R6uxfaUu1jRvAi0WHtuWdv_JQ7IbXJvxaKszsrq6fF7eFHcP17fLxV3hBZfrQnvl2FwwL-uqYuCNVQGkhRo0r3lwzqJ3NWPcOQ0syGCk0ZVWxlkprDJ8Rk5_eofUv42Y38uuyd-DXMR-zKXgQgoQWqoNerJFx6rDuhxS07n0Wf5ewb8AoZVe2w |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1142/S021972002550009X |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| EISSN | 1757-6334 |
| ExternalDocumentID | 40717383 |
| Genre | Journal Article |
| GroupedDBID | CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c324X-6c5a1831c4dbb10c795f0490d062d2faa9ecad112aa601f4f7476b657a9439572 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538186000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1757-6334 |
| IngestDate | Tue Jul 29 18:17:37 EDT 2025 Thu Jul 31 01:53:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | deep learning miRNA expression cross-modality encoder-decoder |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c324X-6c5a1831c4dbb10c795f0490d062d2faa9ecad112aa601f4f7476b657a9439572 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0009-0003-1890-6409 0000-0002-9482-9949 0000-0002-4580-5975 0000-0002-9209-458X |
| PMID | 40717383 |
| PQID | 3234303645 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_3234303645 pubmed_primary_40717383 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Jun 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-Jun |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Journal of bioinformatics and computational biology |
| PublicationTitleAlternate | J Bioinform Comput Biol |
| PublicationYear | 2025 |
| Score | 2.3695364 |
| Snippet | Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 2550009 |
| SubjectTerms | Algorithms Computational Biology - methods Deep Learning Gene Expression Profiling - methods Humans MicroRNAs - genetics MicroRNAs - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Single-Cell Analysis - methods |
| Title | Deep learning inference of miRNA expression from bulk and single-cell mRNA expression |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/40717383 https://www.proquest.com/docview/3234303645 |
| Volume | 23 |
| WOSCitedRecordID | wos001538186000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3quHDjA1_jiwhuw7TpbdOuZFAHN5ZBHeiu5CmDTjs6jvj5JpkM4kIQ3HTVQri5Sc65J7cHoQuIhFHSMtUsBUOAcyBc5oYIDQbApRQV3myClWVeVcUwFNxm4Vrlck_0G7VqpauR9xKaQOJFs8vpK3GuUU5dDRYaq6iTWCjjsppVvvuNpYxkSQJByIyB9h7scVYw6lG0gxbV76DSHy6Drf8OaxttBliJ-4s82EErutlFo2utpzj4Qjzh8bK3D7cGT8b3ZR_rz3APtsGuzwSL-csz5o3CroLwookr6-PJzzf30Ghw83h1S4KNApEWLVUkkym3CzeWoISII8mK1Di9T0UZVdRwXmjJlcVdnFt2ZsBYhpGJLGW8AKfi0X201rSNPkS4EGByISmTNAYJhkfGArrczqpSFirmXXS-jFJt09QNkje6nc_q7zh10cEi1PV08T-N2nNKy5SP_vD1MdqgzoHX10FOUMfYRapP0br8eB_P3s78_NtnObz7AmL_uvg |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+inference+of+miRNA+expression+from+bulk+and+single-cell+mRNA+expression&rft.jtitle=Journal+of+bioinformatics+and+computational+biology&rft.au=Ripan%2C+Rony+Chowdhury&rft.au=Athaya%2C+Tasbiraha&rft.au=Li%2C+Xiaoman&rft.au=Hu%2C+Haiyan&rft.date=2025-06-01&rft.issn=1757-6334&rft.eissn=1757-6334&rft.volume=23&rft.issue=3&rft.spage=2550009&rft_id=info:doi/10.1142%2FS021972002550009X&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6334&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6334&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6334&client=summon |