Deep learning inference of miRNA expression from bulk and single-cell mRNA expression

Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder archi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of bioinformatics and computational biology Ročník 23; číslo 3; s. 2550009
Hlavní autori: Ripan, Rony Chowdhury, Athaya, Tasbiraha, Li, Xiaoman, Hu, Haiyan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Singapore 01.06.2025
Predmet:
ISSN:1757-6334, 1757-6334
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data.
AbstractList Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data.Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data.
Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing miRNAs. To address this, we introduce two deep learning models: Cross-modality (CM) and single-modality (SM), both based on encoder-decoder architectures. These models predict miRNA expression at both bulk and single-cell levels using mRNA data. We evaluated the performance of CM and SM against the state-of-the-art miRSCAPE approach, using both bulk and single-cell datasets. Our results demonstrate that both CM and SM outperform miRSCAPE in accuracy. Furthermore, incorporating miRNA target information substantially enhanced performance compared to models that utilized all genes. These models provide powerful tools for predicting miRNA expression from single-cell mRNA data.
Author Ripan, Rony Chowdhury
Hu, Haiyan
Li, Xiaoman
Athaya, Tasbiraha
Author_xml – sequence: 1
  givenname: Rony Chowdhury
  orcidid: 0009-0003-1890-6409
  surname: Ripan
  fullname: Ripan, Rony Chowdhury
  organization: Department of Computer Science, University of Central Florida, Orlando, Florida, USA
– sequence: 2
  givenname: Tasbiraha
  orcidid: 0000-0002-9482-9949
  surname: Athaya
  fullname: Athaya, Tasbiraha
  organization: Department of Computer Science, University of Central Florida, Orlando, Florida, USA
– sequence: 3
  givenname: Xiaoman
  orcidid: 0000-0002-9209-458X
  surname: Li
  fullname: Li, Xiaoman
  organization: Burnett School of Biomedical Science, College of Medicine, University of Central Florida Orlando, Florida, USA
– sequence: 4
  givenname: Haiyan
  orcidid: 0000-0002-4580-5975
  surname: Hu
  fullname: Hu, Haiyan
  organization: Genomics and Bioinformatics Cluster, University of Central Florida, Orlando, Florida, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40717383$$D View this record in MEDLINE/PubMed
BookMark eNpVkE1LxDAYhIOs6Lr6A7xIjl6qb743x2X9BFFQF_ZW0vSNFNu0Jhb037viCnqaOTwzDHNAJrGPSMgxgzPGJD9_As6s4QBcKQCw6x0yZUaZQgshJ3_8HtmXYJgRczElqwvEgbboUmziC21iwITRI-0D7ZrH-wXFjyFhzk0faUh9R6uxfaUu1jRvAi0WHtuWdv_JQ7IbXJvxaKszsrq6fF7eFHcP17fLxV3hBZfrQnvl2FwwL-uqYuCNVQGkhRo0r3lwzqJ3NWPcOQ0syGCk0ZVWxlkprDJ8Rk5_eofUv42Y38uuyd-DXMR-zKXgQgoQWqoNerJFx6rDuhxS07n0Wf5ewb8AoZVe2w
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1142/S021972002550009X
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
EISSN 1757-6334
ExternalDocumentID 40717383
Genre Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c324X-6c5a1831c4dbb10c795f0490d062d2faa9ecad112aa601f4f7476b657a9439572
IEDL.DBID 7X8
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001538186000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1757-6334
IngestDate Tue Jul 29 18:17:37 EDT 2025
Thu Jul 31 01:53:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords deep learning
miRNA expression
cross-modality
encoder-decoder
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c324X-6c5a1831c4dbb10c795f0490d062d2faa9ecad112aa601f4f7476b657a9439572
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0003-1890-6409
0000-0002-9482-9949
0000-0002-4580-5975
0000-0002-9209-458X
PMID 40717383
PQID 3234303645
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3234303645
pubmed_primary_40717383
PublicationCentury 2000
PublicationDate 2025-Jun
20250601
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-Jun
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of bioinformatics and computational biology
PublicationTitleAlternate J Bioinform Comput Biol
PublicationYear 2025
Score 2.3695364
Snippet Studying miRNA activity at the single-cell level presents a significant challenge due to the limitations of existing single-cell technologies in capturing...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 2550009
SubjectTerms Algorithms
Computational Biology - methods
Deep Learning
Gene Expression Profiling - methods
Humans
MicroRNAs - genetics
MicroRNAs - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Single-Cell Analysis - methods
Title Deep learning inference of miRNA expression from bulk and single-cell mRNA expression
URI https://www.ncbi.nlm.nih.gov/pubmed/40717383
https://www.proquest.com/docview/3234303645
Volume 23
WOSCitedRecordID wos001538186000002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LSsQwFA3quHDjA1_jiwhuw7TpbdOuZFAHN5ZBHeiu5CmDTjs6jvj5JpkM4kIQ3HTVQri5Sc65J7cHoQuIhFHSMtUsBUOAcyBc5oYIDQbApRQV3myClWVeVcUwFNxm4Vrlck_0G7VqpauR9xKaQOJFs8vpK3GuUU5dDRYaq6iTWCjjsppVvvuNpYxkSQJByIyB9h7scVYw6lG0gxbV76DSHy6Drf8OaxttBliJ-4s82EErutlFo2utpzj4Qjzh8bK3D7cGT8b3ZR_rz3APtsGuzwSL-csz5o3CroLwookr6-PJzzf30Ghw83h1S4KNApEWLVUkkym3CzeWoISII8mK1Di9T0UZVdRwXmjJlcVdnFt2ZsBYhpGJLGW8AKfi0X201rSNPkS4EGByISmTNAYJhkfGArrczqpSFirmXXS-jFJt09QNkje6nc_q7zh10cEi1PV08T-N2nNKy5SP_vD1MdqgzoHX10FOUMfYRapP0br8eB_P3s78_NtnObz7AmL_uvg
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+inference+of+miRNA+expression+from+bulk+and+single-cell+mRNA+expression&rft.jtitle=Journal+of+bioinformatics+and+computational+biology&rft.au=Ripan%2C+Rony+Chowdhury&rft.au=Athaya%2C+Tasbiraha&rft.au=Li%2C+Xiaoman&rft.au=Hu%2C+Haiyan&rft.date=2025-06-01&rft.issn=1757-6334&rft.eissn=1757-6334&rft.volume=23&rft.issue=3&rft.spage=2550009&rft_id=info:doi/10.1142%2FS021972002550009X&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1757-6334&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1757-6334&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1757-6334&client=summon