A Hybrid Feature Selection Method using an Improved Binary Butterfly Optimization Algorithm and Adaptive β -Hill Climbing

The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired metaheuristic algorithm mimicking the food-foraging behavior of butterflies. Its abilities include simplicity, good convergence rate towards local optima, and avoiding the local optima stagnation problem to some extent...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE access Ročník 11; s. 1
Hlavný autor: Tiwari, Anurag
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Piscataway IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:2169-3536, 2169-3536
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired metaheuristic algorithm mimicking the food-foraging behavior of butterflies. Its abilities include simplicity, good convergence rate towards local optima, and avoiding the local optima stagnation problem to some extent. In earlier studies, the performance of Binary BOA (BBOA) is superior to various state-of-the-art methods in different optimization issues, such as search space reduction and solving classical engineering problems. Here, BBOA expands the original search space with all possibilities (Exploration) and seeks to determine the best one from all the produced solutions (Exploitation). Generally, the global performance of BBOA depends on the tradeoff between the Exploration and Exploitation phase and produces quality solutions when a suitable tradeoff is maintained. This study introduces an improved and computationally effective variant of conventional BBOA by improving the local search ability of the Butterfly Optimization Algorithm. Initially, twelve binary variants were produced using three different transfer functions (S, U, V-shaped), and solution quality is evaluated in terms of respective fitness function scores. Next, we explored the local search ability of BOA by another recently developed optimization technique, namely, Adaptive β -Hill Climbing, to compute quality solutions. This optimization process employed two stochastic operators: N -operator (Neighborhood operator) and β -operator (Mutation operator) to generate improved offspring compared to parent solutions. This phase is iteratively implemented until the desired level of binary pattern with suitable classification accuracy is obtained. We validated the proposed approach on twenty datasets with eleven state-of-the-art feature selection algorithms. The overall results suggest that the proposed improvements increase the classification accuracy with fewer features on most datasets. In addition, the proposed approach's time complexity was significantly reduced on eighteenth out of twenty datasets. Moreover, the proposed method balances space exploration and solution exploitation in feature selection problems.
AbstractList The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired metaheuristic algorithm mimicking the food-foraging behavior of butterflies. Its abilities include simplicity, good convergence rate towards local optima, and avoiding the local optima stagnation problem to some extent. In earlier studies, the performance of Binary BOA (BBOA) is shown to be superior to various state-of-the-art methods in different optimization issues, such as search space reduction and solving classical engineering problems. Here, BBOA expands the original search space with all possibilities (Exploration) and seeks to determine the best one from all the produced solutions (Exploitation). Generally, the global performance of BBOA depends on the tradeoff between the Exploration and Exploitation phase and hence, produces quality solutions when a suitable tradeoff is maintained. This study introduces an improved and computationally effective variant of conventional BBOA by improving the local search ability of the Butterfly Optimization Algorithm. Initially, twelve binary variants were produced using three different transfer functions (S, U, V-shaped), and solution quality is evaluated in terms of respective fitness function scores. Next, we explored the local search ability of BOA by another recently developed optimization technique, namely, Adaptive <tex-math notation="LaTeX">$\beta -$ </tex-math>Hill Climbing, to compute quality solutions. This optimization process employed two stochastic operators: <tex-math notation="LaTeX">$N$ </tex-math>-operator (Neighborhood operator) and <tex-math notation="LaTeX">$\beta $ </tex-math>-operator (Mutation operator) to generate improved offspring compared to parent solutions. This phase is iteratively implemented until the desired level of binary pattern with suitable classification accuracy is obtained. We validated the proposed approach on twenty datasets with eleven state-of-the-art feature selection algorithms. The overall results suggest that the proposed improvements increase the classification accuracy with fewer features on most datasets. In addition, the proposed approach's time complexity was significantly reduced on eighteenth out of twenty datasets. Moreover, the proposed method effectively balances space exploration and solution exploitation in feature selection problems.
The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired metaheuristic algorithm mimicking the food-foraging behavior of butterflies. Its abilities include simplicity, good convergence rate towards local optima, and avoiding the local optima stagnation problem to some extent. In earlier studies, the performance of Binary BOA (BBOA) is shown to be superior to various state-of-the-art methods in different optimization issues, such as search space reduction and solving classical engineering problems. Here, BBOA expands the original search space with all possibilities (Exploration) and seeks to determine the best one from all the produced solutions (Exploitation). Generally, the global performance of BBOA depends on the tradeoff between the Exploration and Exploitation phase and hence, produces quality solutions when a suitable tradeoff is maintained. This study introduces an improved and computationally effective variant of conventional BBOA by improving the local search ability of the Butterfly Optimization Algorithm. Initially, twelve binary variants were produced using three different transfer functions (S, U, V-shaped), and solution quality is evaluated in terms of respective fitness function scores. Next, we explored the local search ability of BOA by another recently developed optimization technique, namely, Adaptive [Formula Omitted]Hill Climbing, to compute quality solutions. This optimization process employed two stochastic operators: [Formula Omitted]-operator (Neighborhood operator) and [Formula Omitted]-operator (Mutation operator) to generate improved offspring compared to parent solutions. This phase is iteratively implemented until the desired level of binary pattern with suitable classification accuracy is obtained. We validated the proposed approach on twenty datasets with eleven state-of-the-art feature selection algorithms. The overall results suggest that the proposed improvements increase the classification accuracy with fewer features on most datasets. In addition, the proposed approach’s time complexity was significantly reduced on eighteenth out of twenty datasets. Moreover, the proposed method effectively balances space exploration and solution exploitation in feature selection problems.
The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired metaheuristic algorithm mimicking the food-foraging behavior of butterflies. Its abilities include simplicity, good convergence rate towards local optima, and avoiding the local optima stagnation problem to some extent. In earlier studies, the performance of Binary BOA (BBOA) is superior to various state-of-the-art methods in different optimization issues, such as search space reduction and solving classical engineering problems. Here, BBOA expands the original search space with all possibilities (Exploration) and seeks to determine the best one from all the produced solutions (Exploitation). Generally, the global performance of BBOA depends on the tradeoff between the Exploration and Exploitation phase and produces quality solutions when a suitable tradeoff is maintained. This study introduces an improved and computationally effective variant of conventional BBOA by improving the local search ability of the Butterfly Optimization Algorithm. Initially, twelve binary variants were produced using three different transfer functions (S, U, V-shaped), and solution quality is evaluated in terms of respective fitness function scores. Next, we explored the local search ability of BOA by another recently developed optimization technique, namely, Adaptive β -Hill Climbing, to compute quality solutions. This optimization process employed two stochastic operators: N -operator (Neighborhood operator) and β -operator (Mutation operator) to generate improved offspring compared to parent solutions. This phase is iteratively implemented until the desired level of binary pattern with suitable classification accuracy is obtained. We validated the proposed approach on twenty datasets with eleven state-of-the-art feature selection algorithms. The overall results suggest that the proposed improvements increase the classification accuracy with fewer features on most datasets. In addition, the proposed approach's time complexity was significantly reduced on eighteenth out of twenty datasets. Moreover, the proposed method balances space exploration and solution exploitation in feature selection problems.
Author Tiwari, Anurag
Author_xml – sequence: 1
  givenname: Anurag
  surname: Tiwari
  fullname: Tiwari, Anurag
  organization: Thapar Institute of Engineering and Technology, Patiala, Punjab, India
BookMark eNp9kc9u1DAQhyNUJErpE8DBEucs_pM49jGNWnaloh4WzpZjT7ZeJfHiOJW2j8WD8Ex4N0WqOOCLrfF8n0bze59djH6ELPtI8IoQLL_UTXO73a4opmzFaFUUXL7JLinhMmcl4xev3u-y62na43REKpXVZfZco_WxDc6iO9BxDoC20IOJzo_oG8RHb9E8uXGH9Ig2wyH4J7Doxo06HNHNHCOErj-ih0N0g3vWZ6zudz64-DgkxqLa6vT5BOj3L5SvXd-jpndDm5Qfsred7ie4frmvsh93t9-bdX7_8HXT1Pe5YbSQedvx1nAGGjjjhcWcSEJEV2nMDOO8EkCsLlqNO8KkFbITRlSmq8rW4EJqy66yzeK1Xu_VIbghDa-8dupc8GGndIjO9KAAtzSJAZIhsVhg3hnLBCUguWAn1-fFlTbxc4Ypqr2fw5jGV1RwUpRliiR1yaXLBD9NATplXDwvJwbtekWwOiWnluTUKTn1klxi2T_s34n_T31aKAcArwhCSUEl-wPJ-6e7
CODEN IAECCG
CitedBy_id crossref_primary_10_1016_j_rineng_2025_104262
crossref_primary_10_1109_ACCESS_2024_3514781
crossref_primary_10_1109_TAI_2023_3334707
crossref_primary_10_1109_ACCESS_2024_3508028
crossref_primary_10_15832_ankutbd_1537267
crossref_primary_10_1016_j_dt_2025_06_019
crossref_primary_10_1109_ACCESS_2023_3342064
crossref_primary_10_1007_s42044_025_00252_w
Cites_doi 10.1016/j.engappai.2020.104079
10.1109/ICSPIS51611.2020.9349589
10.1504/IJMHEUR.2018.091880
10.1007/s00521-013-1525-5
10.1109/ICNN.1995.488968
10.1016/j.knosys.2020.106560
10.1007/s00500-018-3102-4
10.1504/IJBIC.2010.032124
10.1109/ACCESS.2021.3110882
10.1016/j.neucom.2015.06.083
10.1109/ACCESS.2020.2985986
10.1016/j.eswa.2019.06.044
10.1016/j.eswa.2018.08.051
10.1016/j.asoc.2007.05.007
10.1007/s00521-015-1923-y
10.1007/s12652-019-01324-z
10.1109/ACCESS.2020.3033757
10.1016/j.amc.2020.125535
10.1007/s00521-013-1367-1
10.1016/j.plrev.2005.10.001
10.1016/j.knosys.2015.12.022
10.1007/s11047-009-9175-3
10.1109/TEVC.2010.2059031
10.1016/j.jksuci.2019.11.007
10.1016/j.compbiomed.2021.105152
10.1016/j.eswa.2022.116621
10.1007/s11222-009-9153-8
10.3233/JIFS-16798
10.1038/scientificamerican0792-66
10.1007/s12652-020-02484-z
10.1109/ICRITO.2018.8748282
10.1016/j.advengsoft.2015.01.010
10.1007/s00500-020-04812-z
10.1007/s10489-017-1019-8
10.1016/j.knosys.2019.105190
10.1145/1143997.1144177
10.1016/j.eswa.2022.117757
10.1007/BF00994018
10.1016/j.eswa.2023.119921
10.1007/s00500-019-03887-7
10.1080/019697298125470
10.1016/j.ssci.2011.08.065
10.1007/s10489-017-0903-6
10.1016/j.advengsoft.2013.12.007
10.1109/ACCESS.2018.2818682
10.1109/MED.2007.4433821
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2023.3274469
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Materials Research Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 1
ExternalDocumentID oai_doaj_org_article_e0b27a0ee87c49a0806fcd3821e9683d
10_1109_ACCESS_2023_3274469
10121429
Genre orig-research
GroupedDBID 0R~
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
4.4
AAYXX
AGSQL
CITATION
EJD
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3249-bf6bc63eae6364d0619118f7a03c36678e1da4ba0f139d89f8c87cf75bc049ad3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:52:42 EDT 2025
Mon Jun 30 05:51:52 EDT 2025
Sat Nov 29 04:02:37 EST 2025
Tue Nov 18 21:22:39 EST 2025
Wed Aug 27 02:18:22 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3249-bf6bc63eae6364d0619118f7a03c36678e1da4ba0f139d89f8c87cf75bc049ad3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6816-0113
OpenAccessLink https://doaj.org/article/e0b27a0ee87c49a0806fcd3821e9683d
PQID 2861455110
PQPubID 4845423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_ACCESS_2023_3274469
ieee_primary_10121429
doaj_primary_oai_doaj_org_article_e0b27a0ee87c49a0806fcd3821e9683d
proquest_journals_2861455110
crossref_primary_10_1109_ACCESS_2023_3274469
PublicationCentury 2000
PublicationDate 2023-00-00
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023-00-00
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref52
ref11
ref10
ref17
ref16
ref19
ref18
woolson (ref39) 2007
ref51
ref50
ref46
ref45
ref48
ref41
ref44
ref43
vapnik (ref28) 1991; 4
ref49
ref8
ref7
murphy (ref31) 1992
ref9
ref4
ref3
ref6
ref5
swinburne (ref29) 2004; 194
ref40
ref35
ref34
ref37
ref36
deep (ref47) 2011; 2
ref30
ref33
ref32
cortes (ref27) 1995; 20
ref2
ref1
ref38
tiwari (ref42) 2023
ref24
ref23
ref26
ref25
ref20
ref22
ref21
References_xml – ident: ref38
  doi: 10.1016/j.engappai.2020.104079
– ident: ref51
  doi: 10.1109/ICSPIS51611.2020.9349589
– ident: ref12
  doi: 10.1504/IJMHEUR.2018.091880
– ident: ref14
  doi: 10.1007/s00521-013-1525-5
– start-page: 1
  year: 2007
  ident: ref39
  article-title: Wilcoxon signed-rank test
  publication-title: Wiley Encyclopedia of Clinical Trials
– ident: ref4
  doi: 10.1109/ICNN.1995.488968
– ident: ref10
  doi: 10.1016/j.knosys.2020.106560
– ident: ref18
  doi: 10.1007/s00500-018-3102-4
– ident: ref22
  doi: 10.1504/IJBIC.2010.032124
– ident: ref41
  doi: 10.1109/ACCESS.2021.3110882
– ident: ref15
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref37
  doi: 10.1109/ACCESS.2020.2985986
– ident: ref8
  doi: 10.1016/j.eswa.2019.06.044
– ident: ref50
  doi: 10.1016/j.eswa.2018.08.051
– ident: ref19
  doi: 10.1016/j.asoc.2007.05.007
– ident: ref6
  doi: 10.1007/s00521-015-1923-y
– ident: ref11
  doi: 10.1007/s12652-019-01324-z
– ident: ref36
  doi: 10.1109/ACCESS.2020.3033757
– volume: 194
  start-page: 250
  year: 2004
  ident: ref29
  article-title: Bayes' theorem
  publication-title: Revue Philosophique de la France Et de l'Etranger
– ident: ref44
  doi: 10.1016/j.amc.2020.125535
– ident: ref20
  doi: 10.1007/s00521-013-1367-1
– ident: ref5
  doi: 10.1016/j.plrev.2005.10.001
– ident: ref34
  doi: 10.1016/j.knosys.2015.12.022
– ident: ref17
  doi: 10.1007/s11047-009-9175-3
– ident: ref21
  doi: 10.1109/TEVC.2010.2059031
– ident: ref13
  doi: 10.1016/j.jksuci.2019.11.007
– ident: ref24
  doi: 10.1016/j.compbiomed.2021.105152
– ident: ref1
  doi: 10.1016/j.eswa.2022.116621
– ident: ref25
  doi: 10.1007/s11222-009-9153-8
– ident: ref35
  doi: 10.3233/JIFS-16798
– ident: ref3
  doi: 10.1038/scientificamerican0792-66
– year: 1992
  ident: ref31
  publication-title: UCI repository of machine learning databases
– ident: ref9
  doi: 10.1007/s12652-020-02484-z
– ident: ref40
  doi: 10.1109/ICRITO.2018.8748282
– ident: ref32
  doi: 10.1016/j.advengsoft.2015.01.010
– ident: ref45
  doi: 10.1007/s00500-020-04812-z
– ident: ref33
  doi: 10.1007/s10489-017-1019-8
– ident: ref26
  doi: 10.1016/j.knosys.2019.105190
– ident: ref48
  doi: 10.1145/1143997.1144177
– volume: 2
  start-page: 2
  year: 2011
  ident: ref47
  article-title: New variations of order crossover for travelling salesman problem
  publication-title: Int J Comb Optim Probl Inform ? 9
– ident: ref49
  doi: 10.1016/j.eswa.2022.117757
– volume: 20
  start-page: 273
  year: 1995
  ident: ref27
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– ident: ref52
  doi: 10.1016/j.eswa.2023.119921
– ident: ref23
  doi: 10.1007/s00500-019-03887-7
– ident: ref43
  doi: 10.1080/019697298125470
– ident: ref30
  doi: 10.1016/j.ssci.2011.08.065
– ident: ref46
  doi: 10.1007/s10489-017-0903-6
– ident: ref7
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref2
  doi: 10.1109/ACCESS.2018.2818682
– volume: 4
  start-page: 1
  year: 1991
  ident: ref28
  article-title: Principles of risk minimization for learning theory
  publication-title: Proc Adv Neural Inf Process Syst
– ident: ref16
  doi: 10.1109/MED.2007.4433821
– start-page: 1
  year: 2023
  ident: ref42
  article-title: Wilson's disease classification using higher-order Gabor tensors and various classifiers on a small and imbalanced brain MRI dataset
  publication-title: Multimedia Tools Appl J
SSID ssj0000816957
Score 2.3544922
Snippet The Butterfly Optimization Algorithm (BOA) is a recently proposed nature-inspired metaheuristic algorithm mimicking the food-foraging behavior of butterflies....
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive algorithms
Butterfly Optimization Algorithm
Classification
Classification Accuracy
Classification algorithms
Convergence
Convergence Rate
Datasets
Exploitation
Feature extraction
Feature Selection
Heuristic methods
Local Optima
Metaheuristics
Operators (mathematics)
Optimization
Optimization algorithms
Optimization techniques
Search problems
Searching
Sociology
Space exploration
State of the art
Tradeoffs
Transfer Function
Transfer functions
SummonAdditionalLinks – databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEBVN6KE9NP1IiZu06NBj19ldrSXtcWMSfGlaaAu5Ca00cg1rOzh2IflZ-SH9TZnRKsZQWuhtWVashifNjD7mPcY-VtYG1bYuC3S0W6lcZzb3IROe0glhq1r5KDahLi_11VX9NRWrx1oYAIiXz2BIj_Es3y_dhrbKTomLqkAHusf2lJJ9sdZ2Q4UUJOqRSsxCRV6fNuMxGjEkgfChICY8utW8E30iSX9SVfnDFcf4cnHwnz17yV6kRJI3PfKv2BNYvGbPd-gF37C7hk9uqSKLU6K3WQH_FlVvEAr-OSpHc7r2PuV2wfvNBfD8LBbo8iRg3d3yL-hU5qlakzfddLmarX_OsY3njbfX5C7573ueTWZdx8fdbI5r7ekh-3Fx_n08yZLWQuYwpaqzNsjWSQEWpJCVxyiPXlAHZXPhhMSIBoW3VWvzgCmj13XQThOj0ah1uMawXrxl-4vlAo4Yz61FT9AGUSlfySDa4IgYTpQARRgVasDKRwyMS0TkpIfRmbggyWvTA2cIOJOAG7BP20bXPQ_Hvz8_I3C3nxKJdnyBqJk0Jw3kbYkGAqAlaAPmzjI4L3RZQC218AN2SEjv_K8HecBOHseKSTP-xpRaEuc7dujdX5ods2fUxX7_5oTtr1cbeM-eul_r2c3qQxzMD_Pe8xE
  priority: 102
  providerName: IEEE
Title A Hybrid Feature Selection Method using an Improved Binary Butterfly Optimization Algorithm and Adaptive β -Hill Climbing
URI https://ieeexplore.ieee.org/document/10121429
https://www.proquest.com/docview/2861455110
https://doaj.org/article/e0b27a0ee87c49a0806fcd3821e9683d
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3LbtQwFLVQxQIWiEcRU0rlBUvSOnHGj2U6ajWbFiRA6s7ys4yUmVbTKdJs-Kh-SL-Jex23ioQEGzZZRHb8uNf34djnEPKxtTZJ53yV8NduK5mqLAup4gHDCW5bLUMmm5Dn5-riQn8ZUX3hmbABHniYuKPIXCMti1FJ32oLAY5IPnDV1FELxQNaXyb1KJnKNljVQk9lgRmqmT7qZjMY0SGyhR9yhMXDI84jV5QR-wvFyh92OTub05fkRYkSaTf07hV5ElevyfMRduAbsu3ofIvXrShGcbfrSL9mShuYZ3qWaaFpPg5A7YoOOwcx0ON8-5YWdup-Sz-DxViWq5i06y-v1ovNjyXUCbQL9hptIb2_q-aLvqezfrGEPPpyl3w_Pfk2m1eFR6HyEC7pyiXhvODRRsFFG8CDg4VTCWaVey7AW8U62NZZliAcDEon5RWiFU2dh_zBBv6W7KyuVvEdocxaWOUu8VaGViTukkfQN97EWKdpLSekeZhS4wvIOHJd9CYnG0ybQQ4G5WCKHCbk02Ol6wFj4-_Fj1FWj0URIDu_ALUxRW3Mv9RmQnZR0qP2agSfg4_vP4jelNV8YxolEM8dOrT3P9p-T57heIaNnH2ys1nfxg_kqf-5WdysD7Iiw_Ps18lBvo74G1I996E
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3bbhMxELWgIAEPXIsItOAHHtnUu3a8u4_bqFUQbUCiSH2zfE0jbZIqTZDKZ_EhfBMzXjeKhIrUt9VqrfXo2DPjy5xDyEehdSiNsVnAo11RsirTzIWMO0wnuBZ16aLYRDkeV-fn9bdUrB5rYbz38fKZ7-NjPMt3C7vGrbID5KLKwYHeJw8GQhSsK9fabKmghkQ9KBO3UM7qg2Y4BDP6KBHe58iFh_eat-JPpOlPuir_OOMYYY6f3bFvz8nTlErSpsP-Bbnn5y_Jky2CwVfkV0NH11iTRTHVWy89_R51bwAMehq1oylefJ9QPafd9oJ39DCW6NIkYd1e06_gVmapXpM27WSxnK4uZtDG0cbpS3SY9M9vmo2mbUuH7XQGq-3JLvlxfHQ2HGVJbSGzkFTVmQnSWMm99pJL4SDOgx-sQqkZt1xCTPO508JoFiBpdFUdKlshp9HAWFhlaMdfk535Yu7fEMq0Bl9gAhelEzJwEyxSw_HC-zwM8rJHihsMlE1U5KiI0aq4JGG16oBTCJxKwPXIp02jy46J4_-fHyK4m0-RRju-ANRUmpXKM1OAgd6DJWADZM8yWMerIve1rLjrkV1Eeut_Hcg9snczVlSa81eqqCSyvkOH3t7S7AN5NDo7PVEnn8df3pHH2N1uN2eP7KyWa79PHtqfq-nV8n0c2H8BuOz2WA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Feature+Selection+Method+Using+an+Improved+Binary+Butterfly+Optimization+Algorithm+and+Adaptive+%CE%B2%E2%80%93Hill+Climbing&rft.jtitle=IEEE+access&rft.au=Tiwari%2C+Anurag&rft.date=2023&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.eissn=2169-3536&rft.volume=11&rft.spage=93511&rft_id=info:doi/10.1109%2FACCESS.2023.3274469&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon