Low-complexity algorithms for event detection in wireless sensor networks

To ensure that a multi-hop cluster of batterypowered, wireless sensor motes can complete all of its tasks, each task must minimize its use of communication and processing resources. For event detection tasks that are subject to both measurement errors by sensors and communication errors in the wirel...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal on selected areas in communications Vol. 28; no. 7; pp. 1138 - 1148
Main Authors: Xusheng Sun, Coyle, E J
Format: Journal Article
Language:English
Published: New York IEEE 01.09.2010
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0733-8716, 1558-0008
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract To ensure that a multi-hop cluster of batterypowered, wireless sensor motes can complete all of its tasks, each task must minimize its use of communication and processing resources. For event detection tasks that are subject to both measurement errors by sensors and communication errors in the wireless channel, this implies that: (i) the Cluster-Head (CH) must optimally fuse the decisions received from its cluster in order to reduce the effect of measurement errors; (ii) the CH and all motes that relay other motes' decisions must adopt lowcomplexity processing and coding algorithms that minimize the effects of communication errors. This paper combines a Maximum a Posteriori (MAP) approach for local and global decisions in multi-hop sensor networks with low-complexity repetition codes and processing algorithms. It is shown by analysis and confirmed by simulation that there exists an odd integer M and an integer K M such the decision error probability at the CH is reduced when: (1) nodes in rings k ≤ K M hops from the CH directly relay their decisions to the CH; (2) nodes in rings k > K M locally fuse groups of M decisions and then use a repetition code to forward these fused decisions to the CH; and (3) K M is a nondecreasing function of M. This algorithm - and hybrid, hierarchical, and compression approaches based on it - enable tradeoffs amongst the probability of error, energy usage, compression ratio, complexity, and time to decision.
AbstractList To ensure that a multi-hop cluster of batterypowered, wireless sensor motes can complete all of its tasks, each task must minimize its use of communication and processing resources. For event detection tasks that are subject to both measurement errors by sensors and communication errors in the wireless channel, this implies that: (i) the Cluster-Head (CH) must optimally fuse the decisions received from its cluster in order to reduce the effect of measurement errors; (ii) the CH and all motes that relay other motes' decisions must adopt lowcomplexity processing and coding algorithms that minimize the effects of communication errors. This paper combines a Maximum a Posteriori (MAP) approach for local and global decisions in multi-hop sensor networks with low-complexity repetition codes and processing algorithms. It is shown by analysis and confirmed by simulation that there exists an odd integer M and an integer K sub(M) such the decision error probability at the CH is reduced when: (1) nodes in rings k [els] K sub(M) hops from the CH directly relay their decisions to the CH; (2) nodes in rings k >K sub(M) locally fuse groups of M decisions and then use a repetition code to forward these fused decisions to the CH; and (3) K sub(M) is a nondecreasing function of M. This algorithm - and hybrid, hierarchical, and compression approaches based on it - enable tradeoffs amongst the probability of error, energy usage, compression ratio, complexity, and time to decision.
To ensure that a multi-hop cluster of batterypowered, wireless sensor motes can complete all of its tasks, each task must minimize its use of communication and processing resources. For event detection tasks that are subject to both measurement errors by sensors and communication errors in the wireless channel, this implies that: (i) the Cluster-Head (CH) must optimally fuse the decisions received from its cluster in order to reduce the effect of measurement errors; (ii) the CH and all motes that relay other motes' decisions must adopt lowcomplexity processing and coding algorithms that minimize the effects of communication errors. This paper combines a Maximum a Posteriori (MAP) approach for local and global decisions in multi-hop sensor networks with low-complexity repetition codes and processing algorithms. It is shown by analysis and confirmed by simulation that there exists an odd integer M and an integer K M such the decision error probability at the CH is reduced when: (1) nodes in rings k ≤ K M hops from the CH directly relay their decisions to the CH; (2) nodes in rings k > K M locally fuse groups of M decisions and then use a repetition code to forward these fused decisions to the CH; and (3) K M is a nondecreasing function of M. This algorithm - and hybrid, hierarchical, and compression approaches based on it - enable tradeoffs amongst the probability of error, energy usage, compression ratio, complexity, and time to decision.
To ensure that a multi-hop cluster of batterypowered, wireless sensor motes can complete all of its tasks, each task must minimize its use of communication and processing resources. For event detection tasks that are subject to both measurement errors by sensors and communication errors in the wireless channel, this implies that: (i) the Cluster-Head (CH) must optimally fuse the decisions received from its cluster in order to reduce the effect of measurement errors; (ii) the CH and all motes that relay other motes' decisions must adopt lowcomplexity processing and coding algorithms that minimize the effects of communication errors. This paper combines a Maximum a Posteriori (MAP) approach for local and global decisions in multi-hop sensor networks with low-complexity repetition codes and processing algorithms. It is shown by analysis and confirmed by simulation that there exists an odd integer M and an integer KM such the decision error probability at the CH is reduced when: (1) nodes in rings k [= or <, slanted] KM hops from the CH directly relay their decisions to the CH; (2) nodes in rings k >KM locally fuse groups of M decisions and then use a repetition code to forward these fused decisions to the CH; and (3) KM is a nondecreasing function of M. This algorithm - and hybrid, hierarchical, and compression approaches based on it - enable tradeoffs amongst the probability of error, energy usage, compression ratio, complexity, and time to decision.
Author Coyle, E J
Xusheng Sun
Author_xml – sequence: 1
  surname: Xusheng Sun
  fullname: Xusheng Sun
  email: xsun7@gatech.edu
  organization: Sch. of ECE, Georgia Inst. of Technol., Atlanta, GA, USA
– sequence: 2
  givenname: E J
  surname: Coyle
  fullname: Coyle, E J
  email: ejc@gatech.edu
  organization: Sch. of ECE, Georgia Inst. of Technol., Atlanta, GA, USA
BookMark eNp9kDtPwzAURi0EEm1hR2KJxMCU4kec2GNV8SiqxADMkevcgEtiF9ul9N-TKIihA16uLJ3vPs4YHVtnAaELgqeEYHnz-DybTynuvxhLIo7QiHAuUoyxOEYjXDCWioLkp2gcwhpjkmWCjtBi6Xapdu2mgW8T94lq3pw38b0NSe18Al9gY1JBBB2Ns4mxyc54aCCEJIANHWIh7pz_CGfopFZNgPPfOkGvd7cv84d0-XS_mM-WqWaUxbQSeaWLXGpJGYEVoVRyQWulpFiBFispeYZBUaJ5UeC6YqxQkudSQgWCKcwm6Hrou_Hucwshlq0JGppGWXDbUBbdlYWQGevIqwNy7bbedsuVBFMhOZOcdxQeKO1dCB7qcuNNq_y-g8pebdmrLXu15aC2i-QHEW2i6gVFr0zzX_ByCBoA-JvDuycJZT_rRIf6
CODEN ISACEM
CitedBy_id crossref_primary_10_1177_1550147720940204
crossref_primary_10_3390_s18020320
crossref_primary_10_1155_2012_460924
crossref_primary_10_1109_TSP_2014_2352606
crossref_primary_10_1145_2140522_2140528
Cites_doi 10.1109/TSP.2006.888888
10.1109/LSP.2008.916720
10.1109/TSP.2007.909355
10.1109/TSP.2007.894286
10.1109/TSP.2005.850334
10.1016/S1389-1286(03)00320-7
10.1109/TSP.2007.898773
10.1109/TWC.2007.05769
10.1109/TRIDNT.2006.1649167
10.1109/TIT.2008.920217
10.1109/ICIW.2008.57
10.1109/TNET.2005.860111
10.1109/TSP.2007.906770
10.1109/TSP.2007.894410
10.1109/MSP.2006.1657814
10.1109/JSAC.2004.830894
10.1109/CHINACOM.2006.344683
10.1109/TSP.2006.890914
10.1109/TSP.2006.887563
10.1109/TIT.2004.840879
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Sep 2010
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
F28
FR3
DOI 10.1109/JSAC.2010.100918
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Engineering Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0008
EndPage 1148
ExternalDocumentID 2722204841
10_1109_JSAC_2010_100918
5555912
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
41~
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ADRHT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IES
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TN5
VH1
AAYXX
CITATION
7SP
8FD
L7M
RIG
F28
FR3
ID FETCH-LOGICAL-c323t-d86dc769c9231eb1229582faa98bec8b99540ea21c5770fd337a95699ede83a03
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000283181200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0733-8716
IngestDate Sun Sep 28 01:24:56 EDT 2025
Mon Jun 30 10:21:16 EDT 2025
Sat Nov 29 05:32:25 EST 2025
Tue Nov 18 21:14:42 EST 2025
Wed Aug 27 02:47:44 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-d86dc769c9231eb1229582faa98bec8b99540ea21c5770fd337a95699ede83a03
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 1028953955
PQPubID 85481
PageCount 11
ParticipantIDs crossref_citationtrail_10_1109_JSAC_2010_100918
proquest_miscellaneous_787178943
proquest_journals_1028953955
crossref_primary_10_1109_JSAC_2010_100918
ieee_primary_5555912
PublicationCentury 2000
PublicationDate 2010-September
2010-09-00
20100901
PublicationDateYYYYMMDD 2010-09-01
PublicationDate_xml – month: 09
  year: 2010
  text: 2010-September
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE journal on selected areas in communications
PublicationTitleAbbrev J-SAC
PublicationYear 2010
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref17
ref16
ref19
ref18
liu (ref10) 2004
yao (ref22) 2008
ref24
ref23
ref26
ref20
ref21
sun (ref25) 2009
kapnadak (ref7) 0
ref8
(ref2) 0
ref9
ref4
ref3
ref6
ref5
sun (ref1) 2010
References_xml – ident: ref16
  doi: 10.1109/TSP.2006.888888
– start-page: 2525
  year: 2008
  ident: ref22
  article-title: Group-ordered SPRT for distributed detection
  publication-title: Proc IEEE Int Conf Acoust Speech Signal Process (ICASSP)
– ident: ref24
  doi: 10.1109/LSP.2008.916720
– ident: ref19
  doi: 10.1109/TSP.2007.909355
– ident: ref9
  doi: 10.1109/TSP.2007.894286
– ident: ref11
  doi: 10.1109/TSP.2005.850334
– year: 0
  ident: ref7
  article-title: Adaptive Quantization for Distributed Characterization of Interferers in Wireless Networks
  publication-title: SenSIP 2008 special issue of Digital Signal Processing
– ident: ref6
  doi: 10.1016/S1389-1286(03)00320-7
– ident: ref21
  doi: 10.1109/TSP.2007.898773
– year: 2009
  ident: ref25
  article-title: Quantization, Channel Compensation, and Energy Allocation for Estimation in Wireless Sensor Networks
  publication-title: 7'th Intl Symposium on Modeling and Optimization in Mobile Ad Hoc and Wireless Networks (WiOpt 2009)
– ident: ref18
  doi: 10.1109/TWC.2007.05769
– year: 0
  ident: ref2
  publication-title: Wireless Sensor Network Technology Trends Report Summer 2008
– ident: ref3
  doi: 10.1109/TRIDNT.2006.1649167
– ident: ref20
  doi: 10.1109/TIT.2008.920217
– ident: ref5
  doi: 10.1109/ICIW.2008.57
– year: 2010
  ident: ref1
  article-title: Local Decisions and Optimal Distributed Detection in Mobile Wireless Sensor Networks
  publication-title: 6'th Intl Workshop on Wireless Networks-Communication Cooperation and Competition (WNC3 2010)
– ident: ref26
  doi: 10.1109/TNET.2005.860111
– ident: ref14
  doi: 10.1109/TSP.2007.906770
– ident: ref23
  doi: 10.1109/TSP.2007.894410
– ident: ref13
  doi: 10.1109/MSP.2006.1657814
– ident: ref8
  doi: 10.1109/JSAC.2004.830894
– ident: ref4
  doi: 10.1109/CHINACOM.2006.344683
– ident: ref17
  doi: 10.1109/TSP.2006.890914
– start-page: 1651
  year: 2004
  ident: ref10
  article-title: Optimal distributed detection strategies for wireless sensor networks
  publication-title: Proc 42nd Annu Allerton Conf Communication Control and Computing
– ident: ref15
  doi: 10.1109/TSP.2006.887563
– ident: ref12
  doi: 10.1109/TIT.2004.840879
SSID ssj0014482
Score 2.0721939
Snippet To ensure that a multi-hop cluster of batterypowered, wireless sensor motes can complete all of its tasks, each task must minimize its use of communication and...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1138
SubjectTerms Algorithms
Clustering algorithms
Clusters
Decisions
Detectors
distributed detection
energy
Error analysis
Error detection
Error probability
Fuses
Relays
Sensor networks
Sensors
Spread spectrum communication
Studies
Tasks
Wireless communication
Wireless sensor networks
Title Low-complexity algorithms for event detection in wireless sensor networks
URI https://ieeexplore.ieee.org/document/5555912
https://www.proquest.com/docview/1028953955
https://www.proquest.com/docview/787178943
Volume 28
WOSCitedRecordID wos000283181200018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0008
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014482
  issn: 0733-8716
  databaseCode: RIE
  dateStart: 19830101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS-RAEC5c8bAefIvjiz7sZWHbSdKT6fRRRFEREXYFb6EflXVgTGSSUX--XZ1MEFaEzSmQTghV6eqvUl9_BfADSXROFoYXxhg-QrTcCB3x1CbS0KaBkQ6evpG3t9nDg7pbgl_9XhhEDOQzPKHTUMt3lZ3Tr7Jh6g9FLYW_SSnbvVp9xcCnGaFiIIXglAQsSpKRGl7_Pj1rSVyxRxTU3uPDEhR6qvwTiMPqcrH-f--1AWsdimSnrds3YQnLLVj9oC24DVc31SsPhHF880ib6enfajZpHp9q5nEqC8JNzGETqFglm5SMVIunPvCx2qe2fkjZMsTrHbi_OP9zdsm7vgncikQ03GVjZ-VYWQJvPhZTx-4sKbRWmfdYZkgCLkKdxDaVMiqcEFL7NEkpdJh5R4ldWC6rEveAuViTYsvY-YV-FBvMnNNFoT3GyxJjlB3AcGHK3Hai4tTbYpqH5CJSORk_J-PnrfEH8LO_47kV1Phi7DYZux_X2XkAhwtv5d2Mq3MCSioVKk0HwPrLfq5QAUSXWM3r3AenWJLg_P7nDz6A7y05gChkh7DczOZ4BCv2pZnUs-Pwvb0DzBjT4w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9RAEB5KFbQP_qri1Vb3wRfB9ZJscpt9LMXS6nkIVujbsj8m9eBMyiWn_fPd2eRCQSmYp0A2IcxkZ7_JfPsNwFsk0TlZWV5Za3mO6LgVJuGFy6SlTQO5iZ6ey8WivLxUX3fg_bgXBhEj-Qw_0Gms5fvGbehX2bQIh6KWwveKPM_SfrfWWDMIiUasGUghOKUB26Jkoqafvh2f9DSuNGAKavBxaxGKXVX-CsVxfTl9_H9v9gQeDTiSHfeOfwo7WD-DvVvqgvtwPm9-80gZx5uAtZlZXTXrZffjZ8sCUmVRuol57CIZq2bLmpFu8SqEPtaG5DYMqXuOePscvp9-vDg540PnBO5EJjruy5l3cqYcwbcQjalnd5lVxqgy-Ky0JAKXoMlSV0iZVF4IaUKipBR6LIOrxAvYrZsaXwLzqSHNlpkPS32eWiy9N1VlAsorM2uVm8B0a0rtBllx6m6x0jG9SJQm42syvu6NP4F34x3XvaTGHWP3ydjjuMHOEzjceksPc67VBJVUIVRRTICNl8NsoRKIqbHZtDqEp1SS5PzBvx_8Bh6cXXyZ6_n54vMreNhTBYhQdgi73XqDR3Df_eqW7fp1_Pb-APlZ1yo
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-complexity+algorithms+for+event+detection+in+wireless+sensor+networks&rft.jtitle=IEEE+journal+on+selected+areas+in+communications&rft.au=Sun%2C+Xusheng&rft.au=Coyle%2C+Edward+J&rft.date=2010-09-01&rft.issn=0733-8716&rft.volume=28&rft.issue=7&rft.spage=1138&rft.epage=1148&rft_id=info:doi/10.1109%2FJSAC.2010.100918&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0733-8716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0733-8716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0733-8716&client=summon