Neural-Network-Based Optimal Control for a Class of Unknown Discrete-Time Nonlinear Systems Using Globalized Dual Heuristic Programming

In this paper, a neuro-optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is developed. The iterative adaptive dynamic programming algorithm using globalized dual heuristic programming technique is introduced to obtain the optimal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering Jg. 9; H. 3; S. 628 - 634
Hauptverfasser: Liu, Derong, Wang, Ding, Zhao, Dongbin, Wei, Qinglai, Jin, Ning
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway, NJ IEEE 01.07.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1545-5955, 1558-3783
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, a neuro-optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is developed. The iterative adaptive dynamic programming algorithm using globalized dual heuristic programming technique is introduced to obtain the optimal controller with convergence analysis in terms of cost function and control law. In order to carry out the iterative algorithm, a neural network is constructed first to identify the unknown controlled system. Then, based on the learned system model, two other neural networks are employed as parametric structures to facilitate the implementation of the iterative algorithm, which aims at approximating at each iteration the cost function and its derivatives and the control law, respectively. Finally, a simulation example is provided to verify the effectiveness of the proposed optimal control approach. Note to Practitioners-The increasing complexity of the real-world industry processes inevitably leads to the occurrence of nonlinearity and high dimensions, and their mathematical models are often difficult to build. How to design the optimal controller for nonlinear systems without the requirement of knowing the explicit model has become one of the main foci of control practitioners. However, this problem cannot be handled by only relying on the traditional dynamic programming technique because of the "curse of dimensionality". To make things worse, the backward direction of solving process of dynamic programming precludes its wide application in practice. Therefore, in this paper, the iterative adaptive dynamic programming algorithm is proposed to deal with the optimal control problem for a class of unknown nonlinear systems forward-in-time. Moreover, the detailed implementation of the iterative ADP algorithm through the globalized dual heuristic programming technique is also presented by using neural networks. Finally, the effectiveness of the control strategy is illustrated via simulation study.
AbstractList In this paper, a neuro-optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is developed. The iterative adaptive dynamic programming algorithm using globalized dual heuristic programming technique is introduced to obtain the optimal controller with convergence analysis in terms of cost function and control law. In order to carry out the iterative algorithm, a neural network is constructed first to identify the unknown controlled system. Then, based on the learned system model, two other neural networks are employed as parametric structures to facilitate the implementation of the iterative algorithm, which aims at approximating at each iteration the cost function and its derivatives and the control law, respectively. Finally, a simulation example is provided to verify the effectiveness of the proposed optimal control approach. [PUBLICATION ABSTRACT]
In this paper, a neuro-optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is developed. The iterative adaptive dynamic programming algorithm using globalized dual heuristic programming technique is introduced to obtain the optimal controller with convergence analysis in terms of cost function and control law. In order to carry out the iterative algorithm, a neural network is constructed first to identify the unknown controlled system. Then, based on the learned system model, two other neural networks are employed as parametric structures to facilitate the implementation of the iterative algorithm, which aims at approximating at each iteration the cost function and its derivatives and the control law, respectively. Finally, a simulation example is provided to verify the effectiveness of the proposed optimal control approach. Note to Practitioners-The increasing complexity of the real-world industry processes inevitably leads to the occurrence of nonlinearity and high dimensions, and their mathematical models are often difficult to build. How to design the optimal controller for nonlinear systems without the requirement of knowing the explicit model has become one of the main foci of control practitioners. However, this problem cannot be handled by only relying on the traditional dynamic programming technique because of the "curse of dimensionality". To make things worse, the backward direction of solving process of dynamic programming precludes its wide application in practice. Therefore, in this paper, the iterative adaptive dynamic programming algorithm is proposed to deal with the optimal control problem for a class of unknown nonlinear systems forward-in-time. Moreover, the detailed implementation of the iterative ADP algorithm through the globalized dual heuristic programming technique is also presented by using neural networks. Finally, the effectiveness of the control strategy is illustrated via simulation study.
Author Ding Wang
Ning Jin
Derong Liu
Qinglai Wei
Dongbin Zhao
Author_xml – sequence: 1
  givenname: Derong
  surname: Liu
  fullname: Liu, Derong
– sequence: 2
  givenname: Ding
  surname: Wang
  fullname: Wang, Ding
– sequence: 3
  givenname: Dongbin
  surname: Zhao
  fullname: Zhao, Dongbin
– sequence: 4
  givenname: Qinglai
  surname: Wei
  fullname: Wei, Qinglai
– sequence: 5
  givenname: Ning
  surname: Jin
  fullname: Jin, Ning
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26157229$$DView record in Pascal Francis
BookMark eNp9kc1q3DAUhUVIoUnaByjdCEqXnlqSZVnLdPJXCJNCZtZGlq-CElmaShpC-gJ97cjMpIsuurjcu_jOuXDOKTr2wQNCn0i9IKSW39bn95cLWhO6oER2NRdH6IRw3lVMdOx4vhteccn5e3Sa0mNd06aT9Qn6s4JdVK5aQX4O8an6rhKM-G6b7aQcXgafY3DYhIgVXjqVEg4Gb_yTD88eX9ikI2So1nYCvAreWQ8q4vuXlGFKeJOsf8DXLgzK2d_F92JXTG_KR5uy1fhnDA9RTVOhPqB3RrkEHw_7DG2uLtfLm-r27vrH8vy20oyyXGkyggBm2qYxLRkMGRXRZRg1HSg-NmbUehiE6iRn7dAJNspRSEpM07WcEHaGvux9tzH82kHK_WPYRV9e9qRk0kpJaVOorwdKJa2cicprm_ptLKnEl562hAtKZeHEntMxpBTB9Npmle0cm7KuWPZzO_3cTj-30x_aKUryj_LN_H-az3uNBYC_fEtr1hLBXgEezJ5-
CODEN ITASC7
CitedBy_id crossref_primary_10_1016_j_neucom_2015_03_006
crossref_primary_10_1016_S1874_1029_13_60070_1
crossref_primary_10_1016_j_jfranklin_2017_04_015
crossref_primary_10_1007_s11071_019_05170_8
crossref_primary_10_1109_TASE_2023_3326661
crossref_primary_10_1080_16168658_2021_1943887
crossref_primary_10_1016_j_automatica_2020_109222
crossref_primary_10_1049_iet_cta_2012_0486
crossref_primary_10_1016_j_neucom_2017_12_045
crossref_primary_10_1016_j_asoc_2021_107153
crossref_primary_10_1109_TSMC_2021_3089768
crossref_primary_10_1007_s12652_019_01522_9
crossref_primary_10_1016_j_ins_2021_08_062
crossref_primary_10_1016_j_neunet_2021_08_012
crossref_primary_10_1007_s00521_014_1738_2
crossref_primary_10_1016_j_jfranklin_2019_08_024
crossref_primary_10_1007_s00500_014_1534_z
crossref_primary_10_1080_10739149_2015_1025280
crossref_primary_10_1016_j_isatra_2021_07_036
crossref_primary_10_1016_j_neucom_2017_09_020
crossref_primary_10_1016_j_neucom_2017_05_086
crossref_primary_10_1007_s11063_017_9599_1
crossref_primary_10_1002_asjc_3399
crossref_primary_10_1016_j_arcontrol_2019_01_003
crossref_primary_10_1007_s12555_016_0712_4
crossref_primary_10_1016_j_neucom_2019_03_029
crossref_primary_10_1016_j_neucom_2020_10_034
crossref_primary_10_1016_j_neucom_2020_04_095
crossref_primary_10_4018_ijsda_2014070106
crossref_primary_10_3233_JIFS_190294
crossref_primary_10_1016_j_neucom_2018_02_107
crossref_primary_10_1016_j_isatra_2018_01_014
crossref_primary_10_1016_j_neucom_2016_02_029
crossref_primary_10_1016_j_neucom_2017_07_058
crossref_primary_10_3390_math11040906
crossref_primary_10_1016_j_ins_2017_05_005
crossref_primary_10_1016_j_neucom_2019_05_026
crossref_primary_10_1049_iet_cta_2018_5353
crossref_primary_10_1109_TSMC_2020_2997559
crossref_primary_10_1016_j_neucom_2021_10_046
crossref_primary_10_1016_j_engappai_2024_108284
crossref_primary_10_1016_j_jfranklin_2021_04_009
crossref_primary_10_1016_j_amc_2021_126324
crossref_primary_10_1109_TNNLS_2022_3164727
crossref_primary_10_1016_j_ins_2016_12_016
crossref_primary_10_1016_j_neunet_2020_07_016
crossref_primary_10_1016_j_ins_2016_05_034
crossref_primary_10_1049_cth2_12371
crossref_primary_10_1049_iet_cta_2015_0590
crossref_primary_10_1016_j_neucom_2016_11_041
crossref_primary_10_1016_j_neucom_2023_126834
crossref_primary_10_1007_s00500_018_3063_7
crossref_primary_10_1109_TETCI_2025_3537943
crossref_primary_10_1007_s12555_019_0996_2
crossref_primary_10_1016_j_neunet_2014_10_011
crossref_primary_10_3390_en12060990
crossref_primary_10_1109_TCSII_2024_3371997
crossref_primary_10_1007_s00500_013_1124_5
crossref_primary_10_1016_j_neucom_2017_01_036
crossref_primary_10_1016_j_neucom_2014_03_041
crossref_primary_10_1016_j_neucom_2025_130410
crossref_primary_10_1016_j_neucom_2024_128068
crossref_primary_10_1016_j_neucom_2025_129673
crossref_primary_10_1016_j_ifacol_2018_11_115
crossref_primary_10_1007_s12206_022_0435_9
crossref_primary_10_1007_s11071_021_06634_6
crossref_primary_10_1049_iet_cta_2016_0009
crossref_primary_10_1002_rnc_7626
crossref_primary_10_1016_j_phycom_2020_101240
crossref_primary_10_1002_acs_3972
crossref_primary_10_1016_j_neucom_2018_06_011
crossref_primary_10_1016_j_neucom_2023_126711
crossref_primary_10_1007_s00500_013_1112_9
crossref_primary_10_1016_j_neucom_2013_04_006
crossref_primary_10_1109_TNNLS_2022_3172126
crossref_primary_10_1109_TSMC_2024_3428482
crossref_primary_10_3390_en12152864
crossref_primary_10_1109_TSMC_2018_2863708
crossref_primary_10_1016_j_neucom_2013_09_069
crossref_primary_10_1016_j_ins_2014_05_050
crossref_primary_10_1016_j_jprocont_2020_02_003
crossref_primary_10_1016_j_neucom_2022_11_040
crossref_primary_10_1007_s10462_017_9603_1
crossref_primary_10_1007_s00366_025_02160_w
crossref_primary_10_1007_s12541_021_00542_w
crossref_primary_10_1016_j_ins_2015_04_044
crossref_primary_10_1002_rnc_3181
crossref_primary_10_1109_TSMC_2021_3113357
crossref_primary_10_1049_cth2_12037
crossref_primary_10_1080_00207721_2016_1188177
crossref_primary_10_1016_j_ifacol_2019_12_613
crossref_primary_10_1016_j_engappai_2019_103425
crossref_primary_10_1016_j_jprocont_2021_08_001
crossref_primary_10_1002_oca_2855
crossref_primary_10_4304_jnw_9_9_2521_2528
crossref_primary_10_1016_j_automatica_2016_05_003
crossref_primary_10_1016_j_cnsns_2023_107446
crossref_primary_10_1049_iet_cta_2015_1105
crossref_primary_10_1007_s00500_018_3160_7
crossref_primary_10_1155_2021_5584315
crossref_primary_10_1109_TCYB_2020_3027344
crossref_primary_10_1007_s10462_021_10118_9
Cites_doi 10.1109/TNN.2011.2147797
10.1109/TNN.2009.2027233
10.1016/j.neucom.2011.03.058
10.1109/TASE.2005.844122
10.1109/TASE.2006.879915
10.1109/ADPRL.2011.5967357
10.1109/TASE.2011.2160537
10.1109/TSMCB.2008.926614
10.1109/72.914523
10.1016/j.automatica.2010.02.018
10.1002/9780470182963
10.1016/j.neunet.2009.06.014
10.1109/MCAS.2009.933854
10.1109/MCI.2009.932261
10.1109/72.623201
10.1109/TNN.2002.1000146
10.1109/TNN.2010.2076370
10.1109/TNN.2005.853408
10.1109/ADPRL.2007.368190
10.1109/TSMCB.2008.926599
10.1016/j.neunet.2009.03.008
10.1016/j.neunet.2009.03.012
10.1016/j.automatica.2004.11.034
10.1109/TSMCB.2006.883869
ContentType Journal Article
Copyright 2015 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012
Copyright_xml – notice: 2015 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jul 2012
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TASE.2012.2198057
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Digital Library
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1558-3783
EndPage 634
ExternalDocumentID 2709483561
26157229
10_1109_TASE_2012_2198057
6203617
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
IQODW
RIG
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c323t-c1de7e3f644f61bf1da1cda132f8ea5d4fdccbb7a89536b873d9d7921f4865113
IEDL.DBID RIE
ISICitedReferencesCount 231
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000309841800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5955
IngestDate Sun Oct 05 00:22:27 EDT 2025
Mon Jul 21 09:12:46 EDT 2025
Tue Nov 18 20:57:52 EST 2025
Sat Nov 29 04:12:43 EST 2025
Tue Aug 26 16:59:15 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Keywords Adaptive algorithm
Control program
neural networks
Non linear control
Iterative method
Heuristic programming
Efficiency
Cost function
Dynamic programming
Optimal control (mathematics)
Generic programming
Numerical convergence
Intelligent control
approximate dynamic programming
Adaptive dynamic programming
globalized dual heuristic programming
Neural network
Non linear system
Cost control
Neurocontrollers
Optimal control
Discrete time
Distributed control
Function derivative
Derivative control
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-c1de7e3f644f61bf1da1cda132f8ea5d4fdccbb7a89536b873d9d7921f4865113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1024699224
PQPubID 27623
PageCount 7
ParticipantIDs crossref_citationtrail_10_1109_TASE_2012_2198057
proquest_journals_1024699224
ieee_primary_6203617
crossref_primary_10_1109_TASE_2012_2198057
pascalfrancis_primary_26157229
PublicationCentury 2000
PublicationDate 2012-07-01
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: 2012-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Piscataway, NJ
PublicationPlace_xml – name: Piscataway, NJ
– name: New York
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2012
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref10
ref2
abu-khalaf (ref21) 2005; 41
ref17
ref16
ref19
ref18
jagannathan (ref14) 2006
fu (ref7) 2011; 22
ref24
ref23
bellman (ref1) 1957
ref26
ref25
ref20
ref22
bertsekas (ref11) 1996
ref28
ref27
ref8
ref9
ref3
ref6
ref5
werbos (ref4) 1992
References_xml – volume: 22
  start-page: 1133
  year: 2011
  ident: ref7
  article-title: Adaptive learning and control for MIMO system based on adaptive dynamic programming
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2011.2147797
– year: 1996
  ident: ref11
  publication-title: Neuro-Dynamic Programming
– year: 1957
  ident: ref1
  publication-title: Dynamic Programming
– ident: ref23
  doi: 10.1109/TNN.2009.2027233
– ident: ref26
  doi: 10.1016/j.neucom.2011.03.058
– ident: ref20
  doi: 10.1109/TASE.2005.844122
– year: 2006
  ident: ref14
  publication-title: Neural Network Control of Nonlinear Discrete-time Systems
– ident: ref16
  doi: 10.1109/TASE.2006.879915
– ident: ref17
  doi: 10.1109/ADPRL.2011.5967357
– ident: ref28
  doi: 10.1109/TASE.2011.2160537
– ident: ref10
  doi: 10.1109/TSMCB.2008.926614
– ident: ref12
  doi: 10.1109/72.914523
– year: 1992
  ident: ref4
  publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches
– ident: ref27
  doi: 10.1016/j.automatica.2010.02.018
– ident: ref9
  doi: 10.1002/9780470182963
– ident: ref25
  doi: 10.1016/j.neunet.2009.06.014
– ident: ref6
  doi: 10.1109/MCAS.2009.933854
– ident: ref5
  doi: 10.1109/MCI.2009.932261
– ident: ref13
  doi: 10.1109/72.623201
– ident: ref19
  doi: 10.1109/TNN.2002.1000146
– ident: ref8
  doi: 10.1109/TNN.2010.2076370
– ident: ref18
  doi: 10.1109/TNN.2005.853408
– ident: ref3
  doi: 10.1109/ADPRL.2007.368190
– ident: ref22
  doi: 10.1109/TSMCB.2008.926599
– ident: ref24
  doi: 10.1016/j.neunet.2009.03.008
– ident: ref2
  doi: 10.1016/j.neunet.2009.03.012
– volume: 41
  start-page: 779
  year: 2005
  ident: ref21
  article-title: Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2004.11.034
– ident: ref15
  doi: 10.1109/TSMCB.2006.883869
SSID ssj0024890
Score 2.4408493
Snippet In this paper, a neuro-optimal control scheme for a class of unknown discrete-time nonlinear systems with discount factor in the cost function is developed....
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 628
SubjectTerms Adaptive dynamic programming
Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
approximate dynamic programming
Computer science; control theory; systems
Computer systems and distributed systems. User interface
Control system synthesis
Control theory. Systems
Controllers
Convergence
Discrete time systems
Dynamic programming
Exact sciences and technology
globalized dual heuristic programming
Heuristic
Intelligent control
Neural networks
Optimal control
Software
Theoretical computing
Title Neural-Network-Based Optimal Control for a Class of Unknown Discrete-Time Nonlinear Systems Using Globalized Dual Heuristic Programming
URI https://ieeexplore.ieee.org/document/6203617
https://www.proquest.com/docview/1024699224
Volume 9
WOSCitedRecordID wos000309841800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB61FQc48CqIhVL5wAnhNk6c2D6WPtTTUolW6i3yU1qpzVb74MAf4G8zY6dLEQiJQ6RI8UuZsWfs-fwNwIdWC6Uqobl3QXPpY8fJDHPhYiejUNppm5NNqOlUX1-biy34tLkLE2PM4LN4QK85lh_mfk1HZYcdRc2E2oZtpbpyV-sXr57O5ynkEfDWtO0YwRSVObw8-npKIK76AKenrsgSPbBBOakKQSLtEv9KKuks_liZs7k5e_Z_A30OT0e3kh0VPXgBW3F4CU8ekA3uwg_i4bA3fFqA3_wz2q_AvuCScYs1jwtknaEPyyzLqTLZPLGrgQ7dBnYyw-UF_WtOV0bYtPBr2AUbCc9ZRh6wkkBg9h3bPVljo-dxXYig2UWBgd1iqVdwdXZ6eXzOxzQM3Dd1s-JehKhik9BzSp1wSQQrPD5NnXS0bZApeO-csppCwU6rJpigTC2S1B36c81r2BnmQ3wDLKB_paSXKnZO1jEZ1BTC2AornDdtNYHqXjC9HznKKVXGTZ_3KpXpSZY9ybIfZTmBj5sqd4Wg41-Fd0lYm4KjnCaw_5v0N99xe9mqujYT2LtXh36c40vspZYd0frKt39v9h08ps4LuHcPdlaLdXwPj_y31Wy52M_q-xN3Te4Q
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VggQceBXUhVJ84IRwGydObB9LH1pECZXYSr1FfkortVm0jx74A_xtPHa6FIGQOESKFNuxMo5n7Pn8fQBva8mEKJik1jhJufUNRTdMmfEN90xII3USmxBtKy8u1NkGvF-fhfHeJ_CZ38PblMt3M7vCrbL9BrNmTNyBu6icVefTWr-Y9WTaUcGYgNaqroccJivU_uTg6zHCuMq9-IPKAn3RLS-UZFUQFKkX8buELGjxx9ycHM7J4__r6hN4NASW5CCPhKew4ftn8PAW3eAW_EAmDn1J2wz9ph-iB3PkS5w0rmLNwwxaJzGKJZoksUwyC-S8x223nhxN4wQTI2yKh0ZImxk29JwMlOckYQ9IlhCYfo_tHq1io2O_ylTQ5CwDwa5iqedwfnI8ORzTQYiB2qqsltQy54WvQoydQsNMYE4zG6-qDNLr2vHgrDVGaInJYCNF5ZQTqmSByyZGdNUL2Oxnvd8G4mKEJbjlwjeGlz6oOFYQZcs0M1bVxQiKG8N0dmApR7GMyy6tVgrVoS07tGU32HIE79ZVvmWKjn8V3kJjrQsOdhrB7m_WXz-PC8xalKUawc7NcOiGv3wR31LyBol9-cu_N_sG7o8nn0-704_tp1fwADuSob47sLmcr_xruGevl9PFfDcN5Z8FCvFb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Neural-Network-Based+Optimal+Control+for+a+Class+of+Unknown+Discrete-Time+Nonlinear+Systems+Using+Globalized+Dual+Heuristic+Programming&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Liu%2C+Derong&rft.au=Wang%2C+Ding&rft.au=Zhao%2C+Dongbin&rft.au=Wei%2C+Qinglai&rft.date=2012-07-01&rft.issn=1545-5955&rft.eissn=1558-3783&rft.volume=9&rft.issue=3&rft.spage=628&rft.epage=634&rft_id=info:doi/10.1109%2FTASE.2012.2198057&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TASE_2012_2198057
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon