Self-supervised Variational Autoencoder for Unsupervised Object Counting from Very High-Resolution Satellite Imagery: Applications in Dwelling Extraction in FDP Settlement Areas
In supervised learning, deep learning models demand a large corpus of annotated data for object detection and classification tasks. This constrains their utility in humanitarian emergency response. To overcome this problem, we have proposed an unsupervised dwelling counting from very high-resolution...
Uloženo v:
| Vydáno v: | IEEE transactions on geoscience and remote sensing Ročník 62; s. 1 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0196-2892, 1558-0644 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!