Valuation of University-Originated Technologies: A Predictive Analytics Approach
Experts have difficulty assessing the economic value of university-originated technologies due to the high level of uncertainty associated with the commercialization of early stage and basic technologies. This article proposes a random forest approach to the valuation of university-originated techno...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on engineering management Jg. 68; H. 6; S. 1813 - 1825 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.12.2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0018-9391, 1558-0040 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | Experts have difficulty assessing the economic value of university-originated technologies due to the high level of uncertainty associated with the commercialization of early stage and basic technologies. This article proposes a random forest approach to the valuation of university-originated technologies that integrates monetary value and patent value models for technology valuation. First, a technological characteristics-value matrix was constructed after defining a total of 23 indicators from the U.S. Patent and Trademark and Scopus databases and extracting the value of university-originated technologies from technology transaction databases. Second, a random forest model, an ensemble machine learning model based on a multitude of decision trees, was employed to assess the economic value of university-originated technologies. Finally, the performance of our approach was assessed using quantitative metrics. A case study of the technologies registered in the Office of Technology Licensing of Stanford University confirms, with statistically significant outcomes, that our method is valuable as a complementary tool for the valuation of university-originated technologies. |
|---|---|
| Bibliographie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9391 1558-0040 |
| DOI: | 10.1109/TEM.2019.2938182 |