Efficient Multitarget Visual Tracking Using Random Finite Sets

We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph matching. This framework can be combined with any object detectors that generate positional and dimensional information of objects of interest....

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on circuits and systems for video technology Vol. 18; no. 8; pp. 1016 - 1027
Main Authors: Maggio, E., Taj, M., Cavallaro, A.
Format: Journal Article
Language:English
Published: New York IEEE 01.08.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1051-8215, 1558-2205
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph matching. This framework can be combined with any object detectors that generate positional and dimensional information of objects of interest. The PHD filter compensates for missing detections and removes noise and clutter. Moreover, this filter reduces the growth in complexity with the number of targets from exponential to linear by propagating the first-order moment of the multitarget posterior, instead of the full posterior. In order to account for the nature of the PHD propagation, we propose a novel particle resampling strategy and we adapt dynamic and observation models to cope with varying object scales. The proposed resampling strategy allows us to use the PHD filter when a priori knowledge of the scene is not available. Moreover, the dynamic and observation models are not limited to the PHD filter and can be applied to any Bayesian tracker that can handle state-dependent variances. Extensive experimental results on a large video surveillance dataset using a standard evaluation protocol show that the proposed filtering framework improves the accuracy of the tracker, especially in cluttered scenes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1051-8215
1558-2205
DOI:10.1109/TCSVT.2008.928221