Efficient Multitarget Visual Tracking Using Random Finite Sets

We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph matching. This framework can be combined with any object detectors that generate positional and dimensional information of objects of interest....

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems for video technology Ročník 18; číslo 8; s. 1016 - 1027
Hlavní autori: Maggio, E., Taj, M., Cavallaro, A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.08.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1051-8215, 1558-2205
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph matching. This framework can be combined with any object detectors that generate positional and dimensional information of objects of interest. The PHD filter compensates for missing detections and removes noise and clutter. Moreover, this filter reduces the growth in complexity with the number of targets from exponential to linear by propagating the first-order moment of the multitarget posterior, instead of the full posterior. In order to account for the nature of the PHD propagation, we propose a novel particle resampling strategy and we adapt dynamic and observation models to cope with varying object scales. The proposed resampling strategy allows us to use the PHD filter when a priori knowledge of the scene is not available. Moreover, the dynamic and observation models are not limited to the PHD filter and can be applied to any Bayesian tracker that can handle state-dependent variances. Extensive experimental results on a large video surveillance dataset using a standard evaluation protocol show that the proposed filtering framework improves the accuracy of the tracker, especially in cluttered scenes.
AbstractList The PHD filter compensates for missing detections and removes noise and clutter. [...] this filter reduces the growth in complexity with the number of targets from exponential to linear by propagating the first-order moment of the multitarget posterior, instead of the full posterior.
We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph matching. This framework can be combined with any object detectors that generate positional and dimensional information of objects of interest. The PHD filter compensates for missing detections and removes noise and clutter. Moreover, this filter reduces the growth in complexity with the number of targets from exponential to linear by propagating the first-order moment of the multitarget posterior, instead of the full posterior. In order to account for the nature of the PHD propagation, we propose a novel particle resampling strategy and we adapt dynamic and observation models to cope with varying object scales. The proposed resampling strategy allows us to use the PHD filter when @@ia priori@ knowledge of the scene is not available. Moreover, the dynamic and observation models are not limited to the PHD filter and can be applied to any Bayesian tracker that can handle state-dependent variances. Extensive experimental results on a large video surveillance dataset using a standard evaluation protocol show that the proposed filtering framework improves the accuracy of the tracker, especially in cluttered scenes.
We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph matching. This framework can be combined with any object detectors that generate positional and dimensional information of objects of interest. The PHD filter compensates for missing detections and removes noise and clutter. Moreover, this filter reduces the growth in complexity with the number of targets from exponential to linear by propagating the first-order moment of the multitarget posterior, instead of the full posterior. In order to account for the nature of the PHD propagation, we propose a novel particle resampling strategy and we adapt dynamic and observation models to cope with varying object scales. The proposed resampling strategy allows us to use the PHD filter when a priori knowledge of the scene is not available. Moreover, the dynamic and observation models are not limited to the PHD filter and can be applied to any Bayesian tracker that can handle state-dependent variances. Extensive experimental results on a large video surveillance dataset using a standard evaluation protocol show that the proposed filtering framework improves the accuracy of the tracker, especially in cluttered scenes.
Author Taj, M.
Cavallaro, A.
Maggio, E.
Author_xml – sequence: 1
  givenname: E.
  surname: Maggio
  fullname: Maggio, E.
  organization: Multimedia & Vision Group, Univ. of London, London
– sequence: 2
  givenname: M.
  surname: Taj
  fullname: Taj, M.
  organization: Multimedia & Vision Group, Univ. of London, London
– sequence: 3
  givenname: A.
  surname: Cavallaro
  fullname: Cavallaro, A.
  organization: Multimedia & Vision Group, Univ. of London, London
BookMark eNp9kLtOwzAUhi1UJNrCAyCWiIGtxZecJF6QUNUCUhESvayW69iVS-oU2xl4e1KCGDqw-Hj4vnP5B6jnaqcRuiZ4TAjm98vJYr0cU4yLMacFpeQM9QlAMaIUQ6_9YyCjghK4QIMQdhiTtEjzPnqYGmOV1S4mr00VbZR-q2OytqGRVbL0Un1Yt01W4fi-S1fW-2RmnY06WegYLtG5kVXQV791iFaz6XLyPJq_Pb1MHucjxSiL7WAGRcoympENz8sScp0boGaD1QZTSdKMaMgxM0pRjYGWrMSsBANlZigvORuiu67vwdefjQ5R7G1Quqqk03UTBEtTznJMWvD2BNzVjXftboITSgvgGFoo7yDl6xC8NkK1h0dbu-ilrQTB4hiq-AlVHEMVXaitSU7Mg7d76b_-dW46x2qt__gUgAPP2TcPgoNF
CODEN ITCTEM
CitedBy_id crossref_primary_10_1109_TCSVT_2013_2249374
crossref_primary_10_1016_j_inffus_2016_02_004
crossref_primary_10_1155_2014_495765
crossref_primary_10_1016_j_jvcir_2019_01_026
crossref_primary_10_1016_j_dsp_2019_03_005
crossref_primary_10_1016_j_inffus_2011_03_005
crossref_primary_10_1109_MSP_2010_937395
crossref_primary_10_1121_10_0002257
crossref_primary_10_3390_s16091399
crossref_primary_10_1016_j_sigpro_2013_08_002
crossref_primary_10_1109_JSEN_2023_3285885
crossref_primary_10_1109_TSP_2012_2222389
crossref_primary_10_3724_SP_J_1004_2010_00731
crossref_primary_10_1016_j_sigpro_2019_107278
crossref_primary_10_1109_TCYB_2019_2912939
crossref_primary_10_1049_iet_rsn_2014_0467
crossref_primary_10_1155_2014_481719
crossref_primary_10_1109_TII_2013_2294156
crossref_primary_10_3390_s20030929
crossref_primary_10_1109_ACCESS_2019_2904545
crossref_primary_10_1016_j_neucom_2015_05_096
crossref_primary_10_3390_e23050628
crossref_primary_10_1007_s00138_018_0984_1
crossref_primary_10_1109_TSP_2019_2943234
crossref_primary_10_1016_j_sigpro_2013_04_016
crossref_primary_10_1016_j_ast_2019_02_004
crossref_primary_10_1049_iet_cvi_2010_0026
crossref_primary_10_1155_2014_653259
crossref_primary_10_3724_SP_J_1004_2010_00939
crossref_primary_10_1016_j_cviu_2016_07_006
crossref_primary_10_1016_j_cviu_2016_07_003
crossref_primary_10_1016_j_sigpro_2019_01_028
crossref_primary_10_1007_s00285_015_0909_9
crossref_primary_10_3390_s19061307
crossref_primary_10_3390_app12031369
crossref_primary_10_1109_TAES_2011_5751278
crossref_primary_10_1109_TCSVT_2017_2720749
crossref_primary_10_1109_TVT_2022_3174055
crossref_primary_10_1109_TGRS_2013_2286834
crossref_primary_10_1109_TPAMI_2020_3034435
crossref_primary_10_1186_1687_6180_2011_130
crossref_primary_10_3390_s17030501
crossref_primary_10_1109_TAES_2019_2921210
crossref_primary_10_3390_electronics8070741
crossref_primary_10_1109_TCSVT_2011_2177937
crossref_primary_10_1109_TSP_2014_2364014
crossref_primary_10_1109_TCSVT_2015_2409632
crossref_primary_10_1145_2530282
crossref_primary_10_3390_s20123384
crossref_primary_10_1109_JSTARS_2012_2191144
crossref_primary_10_1109_TAES_2010_5595616
crossref_primary_10_3390_s23218751
crossref_primary_10_1109_LSP_2016_2611138
crossref_primary_10_1109_TSP_2015_2454478
crossref_primary_10_1016_j_jvcir_2015_06_015
crossref_primary_10_3390_s19245437
crossref_primary_10_1109_TMM_2016_2638206
crossref_primary_10_1155_2013_727430
crossref_primary_10_3390_s151229794
crossref_primary_10_1016_j_patcog_2013_02_013
crossref_primary_10_1016_j_asr_2017_03_002
crossref_primary_10_1109_ACCESS_2018_2816805
crossref_primary_10_1109_TCSVT_2017_2736553
crossref_primary_10_1109_TAES_2015_140211
crossref_primary_10_1109_TCSVT_2015_2416555
crossref_primary_10_1121_10_0006780
crossref_primary_10_1007_s11432_013_4975_6
crossref_primary_10_1016_j_ijleo_2015_06_020
crossref_primary_10_1109_TSP_2015_2468677
crossref_primary_10_1109_TIP_2012_2210238
crossref_primary_10_1016_j_neucom_2017_10_018
crossref_primary_10_1049_iet_rsn_2010_0057
crossref_primary_10_1109_TSP_2016_2641392
crossref_primary_10_1016_j_sigpro_2013_03_004
crossref_primary_10_1016_j_ijleo_2013_10_108
crossref_primary_10_1016_j_sigpro_2018_04_015
crossref_primary_10_1109_JSEN_2015_2446756
crossref_primary_10_1109_TAES_2012_6178085
crossref_primary_10_1109_TPAMI_2011_21
crossref_primary_10_1109_TIP_2009_2019934
Cites_doi 10.1109/CDC.2006.377103
10.1109/TPAMI.2005.1
10.1109/ICASSP.2007.366104
10.1109/TAC.1979.1102177
10.1109/ICCV.2001.937594
10.1023/A:1008078328650
10.1155/S1110865704402157
10.1109/TAES.2005.1413764
10.1109/ICPR.2006.1131
10.1109/78.978374
10.1137/0202019
10.1109/TSP.2006.881190
10.1109/TAES.2007.357143
10.1109/ICIF.2006.301809
10.1023/B:VISI.0000013087.49260.fb
10.1109/TAES.2002.1039400
10.1016/j.inffus.2005.09.009
10.1109/ICIF.2003.177320
10.1109/ICIF.2002.1021192
10.1109/TAES.2007.4285353
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TCSVT.2008.928221
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2205
EndPage 1027
ExternalDocumentID 2545208411
10_1109_TCSVT_2008_928221
4559597
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
RIG
F28
FR3
ID FETCH-LOGICAL-c323t-82358436261b97dd57e7f52fb0cb02a1461e5703fcc2e052d3d03d5f5d6f29d93
IEDL.DBID RIE
ISICitedReferencesCount 123
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000259573700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1051-8215
IngestDate Sat Sep 27 22:22:52 EDT 2025
Mon Jun 30 05:17:44 EDT 2025
Sat Nov 29 01:43:58 EST 2025
Tue Nov 18 22:38:11 EST 2025
Tue Aug 26 16:47:33 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Surveillance
Monte Carlo
tracking
PHD filter
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-82358436261b97dd57e7f52fb0cb02a1461e5703fcc2e052d3d03d5f5d6f29d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 912285905
PQPubID 85433
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TCSVT_2008_928221
proquest_journals_912285905
ieee_primary_4559597
crossref_primary_10_1109_TCSVT_2008_928221
proquest_miscellaneous_34493701
PublicationCentury 2000
PublicationDate 2008-Aug.
2008-08-00
20080801
PublicationDateYYYYMMDD 2008-08-01
PublicationDate_xml – month: 08
  year: 2008
  text: 2008-Aug.
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems for video technology
PublicationTitleAbbrev TCSVT
PublicationYear 2008
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
sidenbladh (ref18) 2003
khan (ref6) 2004
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref16
ref19
bar-shalom (ref3) 1988
ref24
ref23
ref26
okuma (ref4) 2004
ref25
ref22
ref21
ikoma (ref20) 2004; 2
kasturi (ref27) 2006
ref8
ref7
ref9
ref5
mahler (ref12) 2002; 1
References_xml – ident: ref17
  doi: 10.1109/CDC.2006.377103
– ident: ref11
  doi: 10.1109/TPAMI.2005.1
– year: 2006
  ident: ref27
  publication-title: Performance Evaluation Protocol for Face Person and Vehicle Detection & Tracking in Video Analysis and Content Extraction
– start-page: 98
  year: 2003
  ident: ref18
  article-title: tracking random sets of vehicles in terrain
  publication-title: Proc IEEE Workshop on Multi-Object Tracking
– ident: ref22
  doi: 10.1109/ICASSP.2007.366104
– ident: ref25
  doi: 10.1109/TAC.1979.1102177
– ident: ref5
  doi: 10.1109/ICCV.2001.937594
– ident: ref1
  doi: 10.1023/A:1008078328650
– ident: ref23
  doi: 10.1155/S1110865704402157
– start-page: 279
  year: 2004
  ident: ref6
  article-title: an mcmc-based particle filter for tracking multiple interacting targets
  publication-title: Proc Eur Conf Comput Vis
– ident: ref9
  doi: 10.1109/TAES.2005.1413764
– ident: ref21
  doi: 10.1109/ICPR.2006.1131
– start-page: 28
  year: 2004
  ident: ref4
  article-title: a boosted particle filter: multitarget detection and tracking
  publication-title: Proc Eur Conf Comput Vis
– volume: 2
  start-page: 1696
  year: 2004
  ident: ref20
  article-title: tracking of feature points in image sequence by smc implementation of phd filter
  publication-title: Proc SICE Annual Conf
– ident: ref2
  doi: 10.1109/78.978374
– ident: ref26
  doi: 10.1137/0202019
– year: 1988
  ident: ref3
  publication-title: Tracking and Data Association
– ident: ref16
  doi: 10.1109/TSP.2006.881190
– ident: ref19
  doi: 10.1109/TAES.2007.357143
– ident: ref14
  doi: 10.1109/ICIF.2006.301809
– ident: ref24
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref7
  doi: 10.1109/TAES.2002.1039400
– ident: ref10
  doi: 10.1016/j.inffus.2005.09.009
– ident: ref13
  doi: 10.1109/ICIF.2003.177320
– ident: ref8
  doi: 10.1109/ICIF.2002.1021192
– ident: ref15
  doi: 10.1109/TAES.2007.4285353
– volume: 1
  year: 2002
  ident: ref12
  article-title: a theoretical foundation for the stein-winter probability hypothesis density (phd) multitarget tracking approach
  publication-title: Proc MSS Nat Symp Sensor Data Fusion
SSID ssj0014847
Score 2.344781
Snippet We propose a filtering framework for multitarget tracking that is based on the probability hypothesis density (PHD) filter and data association using graph...
The PHD filter compensates for missing detections and removes noise and clutter. [...] this filter reduces the growth in complexity with the number of targets...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1016
SubjectTerms Bayesian methods
Detectors
Filtering
Layout
Matched filters
Monte Carlo
Nonlinear filters
Object detection
Particle filters
probability hypothesis density (PHD) filter
Studies
surveillance
Target tracking
tracking
Video surveillance
Title Efficient Multitarget Visual Tracking Using Random Finite Sets
URI https://ieeexplore.ieee.org/document/4559597
https://www.proquest.com/docview/912285905
https://www.proquest.com/docview/34493701
Volume 18
WOSCitedRecordID wos000259573700003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE
  customDbUrl:
  eissn: 1558-2205
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014847
  issn: 1051-8215
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFH9sw4Me_JrinB89eBLrkjRtlosgY8ODDHFz7FbaJIWBtrJu_v3moyuKIngrJK-0L0nfr3m__B7AVSZwoChDPtNY2qeGIZbgSPoSSckixFPqRJIe2Xjcn8_5UwNu6rMwSilLPlO35tLm8mUh1marrEc1_NUAuAlNxiJ3VqvOGNC-LSam4QL2-zqOVRlMjHhvOpjMpo42yQ1rEn-LQbaoyo8vsQ0vo73_Pdg-7FYw0rt3434ADZUfws4XccE23A2tOoQ29NwpW8v59maLcq0tdYwSZpfcs5wB7znJZfHmjRYGgnoTtSqP4GU0nA4e_Kpagi8CEqz0SwcaTBh1GZxyJmXIFMtCkqVIpIgkpn63MnJbmRBEoZDIQKJAhlkoo4xwyYNjaOVFrk7A47o9RBnvkxTThJM0TSKaYcoYlijlsgNo479YVFLipqLFa2x_KRCPrctdiUvn8g5c1ybvTkfjr85t4-O6Y-XeDnQ3gxRXK62MOSZGgw-FHbisW_USMXmPJFfFuowDSjUIQ_j099t2YduRQAyr7wxaq-VancOW-FgtyuWFnWWfaCvN0w
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1dS8MwFL3MKagPfotz6vrgk1iXpOmyvAgyNibOIW6OvZU2SWGgraybv98k7YqiCL4V0pT2puk9zT05B-AyFthTlCGXaSztUsMQC3FLuhJJyVqIRzQXSRqw4bA9nfKnClyXe2GUUpZ8pm7Moa3ly1QszVJZk2r4qwHwGqwb56xit1ZZM6BtayemAQN22zqTFTVMjHhz3BlNxjlxkhveJP6Whaytyo9vsU0wvd3_3doe7BRA0rnLR34fKio5gO0v8oKHcNu1-hC6o5Pvs7Wsb2cyy5a6p85SwqyTO5Y14DyHiUzfnN7MgFBnpBbZEbz0uuNO3y38ElzhEW-hH9rTcMLoy-CIMyl9pljskzhCIkIkNA7eyghuxUIQhXwiPYk86ce-bMWES-4dQzVJE3UCDtftPop5m0SYhpxEUdiiMaaMYYkiLmuAVvELRCEmbjwtXgP7U4F4YEOem1zmIa_BVdnlPVfS-OvkQxPj8sQivDWorwYpKOZaFnBMjAof8mvQKFv1JDGVjzBR6TILPEo1DEP49PfLNmCzP34cBIP74UMdtnJKiOH4nUF1MV-qc9gQH4tZNr-wb9wnS8nRHA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Multitarget+Visual+Tracking+Using+Random+Finite+Sets&rft.jtitle=IEEE+transactions+on+circuits+and+systems+for+video+technology&rft.au=Maggio%2C+E.&rft.au=Taj%2C+M.&rft.au=Cavallaro%2C+A.&rft.date=2008-08-01&rft.issn=1051-8215&rft.eissn=1558-2205&rft.volume=18&rft.issue=8&rft.spage=1016&rft.epage=1027&rft_id=info:doi/10.1109%2FTCSVT.2008.928221&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TCSVT_2008_928221
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1051-8215&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1051-8215&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1051-8215&client=summon