KKT Solution and Conic Relaxation for Solving Quadratically Constrained Quadratic Programming Problems

To find a global optimal solution to the quadratically constrained quadratic programming problem, we explore the relationship between its Lagrangian multipliers and related linear conic programming problems. This study leads to a global optimality condition that is more general than the known positi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 21; číslo 4; s. 1475 - 1490
Hlavní autoři: Lu, Cheng, Fang, Shu-Cherng, Jin, Qingwei, Wang, Zhenbo, Xing, Wenxun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.10.2011
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:To find a global optimal solution to the quadratically constrained quadratic programming problem, we explore the relationship between its Lagrangian multipliers and related linear conic programming problems. This study leads to a global optimality condition that is more general than the known positive semidefiniteness condition in the literature. Moreover, we propose a computational scheme that provides clues of designing effective algorithms for more solvable quadratically constrained quadratic programming problems. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1052-6234
1095-7189
DOI:10.1137/100793955