Maximizing a Monotone Submodular Function Subject to a Matroid Constraint

Let $f:2^X \rightarrow \cal R_+$ be a monotone submodular set function, and let $(X,\cal I)$ be a matroid. We consider the problem ${\rm max}_{S \in \cal I} f(S)$. It is known that the greedy algorithm yields a $1/2$-approximation [M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, Math. Programming S...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on computing Vol. 40; no. 6; pp. 1740 - 1766
Main Authors: Calinescu, Gruia, Chekuri, Chandra, Pál, Martin, Vondrák, Jan
Format: Journal Article
Language:English
Published: Philadelphia Society for Industrial and Applied Mathematics 01.01.2011
Subjects:
ISSN:0097-5397, 1095-7111
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let $f:2^X \rightarrow \cal R_+$ be a monotone submodular set function, and let $(X,\cal I)$ be a matroid. We consider the problem ${\rm max}_{S \in \cal I} f(S)$. It is known that the greedy algorithm yields a $1/2$-approximation [M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, Math. Programming Stud., no. 8 (1978), pp. 73-87] for this problem. For certain special cases, e.g., ${\rm max}_{|S| \leq k} f(S)$, the greedy algorithm yields a $(1-1/e)$-approximation. It is known that this is optimal both in the value oracle model (where the only access to f is through a black box returning $f(S)$ for a given set S) [G. L. Nemhauser and L. A. Wolsey, Math. Oper. Res., 3 (1978), pp. 177-188] and for explicitly posed instances assuming $P \neq NP$ [U. Feige, J. ACM, 45 (1998), pp. 634-652]. In this paper, we provide a randomized $(1-1/e)$-approximation for any monotone submodular function and an arbitrary matroid. The algorithm works in the value oracle model. Our main tools are a variant of the pipage rounding technique of Ageev and Sviridenko [J. Combin. Optim., 8 (2004), pp. 307-328], and a continuous greedy process that may be of independent interest. As a special case, our algorithm implies an optimal approximation for the submodular welfare problem in the value oracle model [J. Vondrák, Proceedings of the $38$th ACM Symposium on Theory of Computing, 2008, pp. 67-74]. As a second application, we show that the generalized assignment problem (GAP) is also a special case; although the reduction requires $|X|$ to be exponential in the original problem size, we are able to achieve a $(1-1/e-o(1))$-approximation for GAP, simplifying previously known algorithms. Additionally, the reduction enables us to obtain approximation algorithms for variants of GAP with more general constraints. [PUBLICATION ABSTRACT]
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/080733991