Improved Pedestrian Detection Algorithm Based on YOLOv5s
In this study, we propose YOLOv5s-PGD algorithm for dense pedestrian detection, which can improve the recall and reduce the number of parameters compared with YOLOv5s. First, a minimum scale detection layer has been added to deepen the pyramid’s depth and enhance detection accuracy. Second, ghost co...
Gespeichert in:
| Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics Jg. 28; H. 4; S. 768 - 775 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Tokyo
Fuji Technology Press Co. Ltd
20.07.2024
|
| Schlagworte: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this study, we propose YOLOv5s-PGD algorithm for dense pedestrian detection, which can improve the recall and reduce the number of parameters compared with YOLOv5s. First, a minimum scale detection layer has been added to deepen the pyramid’s depth and enhance detection accuracy. Second, ghost convolution has been employed to replace standard convolution to increase real-time performance of the algorithm. Finally, depth separable convolution has been used to address issues of high parameters and large computational complexity that lower the efficiency of the algorithm. Experiment results demonstrate that the detection accuracy of the YOLOv5s-PGD algorithm on the CrowdHuman public dataset is up to 85.1%, which is 2.2% higher than that of YOLOv5s. Furthermore, the number of parameters has decreased by 19.7%, and the calculation burden has decreased by 2.5%. Consequently, the proposed YOLOv5s-PGD algorithm better satisfies the requirements of real-time detection, model optimization, and terminal deployment in dense pedestrian scenarios. |
|---|---|
| AbstractList | In this study, we propose YOLOv5s-PGD algorithm for dense pedestrian detection, which can improve the recall and reduce the number of parameters compared with YOLOv5s. First, a minimum scale detection layer has been added to deepen the pyramid’s depth and enhance detection accuracy. Second, ghost convolution has been employed to replace standard convolution to increase real-time performance of the algorithm. Finally, depth separable convolution has been used to address issues of high parameters and large computational complexity that lower the efficiency of the algorithm. Experiment results demonstrate that the detection accuracy of the YOLOv5s-PGD algorithm on the CrowdHuman public dataset is up to 85.1%, which is 2.2% higher than that of YOLOv5s. Furthermore, the number of parameters has decreased by 19.7%, and the calculation burden has decreased by 2.5%. Consequently, the proposed YOLOv5s-PGD algorithm better satisfies the requirements of real-time detection, model optimization, and terminal deployment in dense pedestrian scenarios. |
| Author | Tan, Guopeng Yan, Yahui Li, Zhihua Zhang, Yuanbiao Wang, Chao |
| Author_xml | – sequence: 1 givenname: Zhihua surname: Li fullname: Li, Zhihua organization: School of Electronic and Information Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and Technological Development Zone, Handan, Hebei 056038, China, Hebei Key Laboratory of Security & Protection Information Sensing and Processing, No.19 Taiji Road, Handan Economic and Technological Development Zone, Handan, Hebei 056038, China – sequence: 2 givenname: Yuanbiao surname: Zhang fullname: Zhang, Yuanbiao organization: School of Electronic and Information Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and Technological Development Zone, Handan, Hebei 056038, China, Hebei Key Laboratory of Security & Protection Information Sensing and Processing, No.19 Taiji Road, Handan Economic and Technological Development Zone, Handan, Hebei 056038, China – sequence: 3 givenname: Chao surname: Wang fullname: Wang, Chao organization: School of Electronic and Information Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and Technological Development Zone, Handan, Hebei 056038, China, Hebei Key Laboratory of Security & Protection Information Sensing and Processing, No.19 Taiji Road, Handan Economic and Technological Development Zone, Handan, Hebei 056038, China – sequence: 4 givenname: Guopeng surname: Tan fullname: Tan, Guopeng organization: School of Electronic and Information Engineering, Hebei University of Engineering, No.19 Taiji Road, Economic and Technological Development Zone, Handan, Hebei 056038, China, Hebei Key Laboratory of Security & Protection Information Sensing and Processing, No.19 Taiji Road, Handan Economic and Technological Development Zone, Handan, Hebei 056038, China – sequence: 5 givenname: Yahui surname: Yan fullname: Yan, Yahui organization: Xinxing Hebei Engineering and Research Inc., Ltd., No.309 Xunzi North Street, Economic Development Zone, Handan, Hebei 056008, China |
| BookMark | eNotkM1OwzAQhC1UJErpC3CKxDnFv4l9LIVCpUjhAAdOlpOswVGTFDutxNtjGk47uzvaHX3XaNYPPSB0S_CKYpWJ-9bUzrnYUL464DyTF2hOpGSpxITPomacpZgwfIWWIbQYR00zzMkcyV138MMJmuQVGgijd6ZPHmGEenRDn6z3n4N341eXPJgQTXH0URblSYQbdGnNPsDyvy7Q-_bpbfOSFuXzbrMu0ppRNqYcBNQMy4rlEnBObKYIbyS3XFlBraSGNSQ3Fai4q7iAJrM0k0JKUTFLBVugu-lujPl9jAl1Oxx9H1_qeJYKxZVS0UUnV-2HEDxYffCuM_5HE6zPkPQESf9B0mdI7BdAzVvY |
| Cites_doi | 10.1109/ICCUBEA.2018.8697857 10.1109/ICCV.2019.00972 10.1109/CVPR.2016.255 10.20965/jaciii.2018.p0683 10.1109/CVPR42600.2020.00165 10.20965/jaciii.2017.p0834 10.1109/TPAMI.2016.2577031 10.1109/CVPR.2017.195 10.1109/CVPR.2016.91 10.20965/jaciii.2017.p0632 10.1088/1742-6596/1952/2/022055 10.3724/SP.J.1089.2019.17283 10.1007/978-3-319-46448-0_2 |
| ContentType | Journal Article |
| Copyright | Copyright © 2024 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2024 Fuji Technology Press Ltd. |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2024.p0768 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 775 |
| ExternalDocumentID | 10_20965_jaciii_2024_p0768 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c323t-4e5ec308b378e071f6914d84f49f52f82a3d17abe971fb45ed6f2685885b3f253 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346228100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1343-0130 |
| IngestDate | Sat Jul 26 02:48:35 EDT 2025 Sat Nov 29 06:43:35 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c323t-4e5ec308b378e071f6914d84f49f52f82a3d17abe971fb45ed6f2685885b3f253 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2024.p0768 |
| PQID | 3082594999 |
| PQPubID | 4911628 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_3082594999 crossref_primary_10_20965_jaciii_2024_p0768 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-20 |
| PublicationDateYYYYMMDD | 2024-07-20 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2024 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2024.p0768-3 key-10.20965/jaciii.2024.p0768-4 key-10.20965/jaciii.2024.p0768-5 key-10.20965/jaciii.2024.p0768-6 key-10.20965/jaciii.2024.p0768-1 key-10.20965/jaciii.2024.p0768-2 key-10.20965/jaciii.2024.p0768-20 key-10.20965/jaciii.2024.p0768-10 key-10.20965/jaciii.2024.p0768-11 key-10.20965/jaciii.2024.p0768-12 key-10.20965/jaciii.2024.p0768-13 key-10.20965/jaciii.2024.p0768-14 key-10.20965/jaciii.2024.p0768-15 key-10.20965/jaciii.2024.p0768-7 key-10.20965/jaciii.2024.p0768-16 key-10.20965/jaciii.2024.p0768-8 key-10.20965/jaciii.2024.p0768-17 key-10.20965/jaciii.2024.p0768-9 key-10.20965/jaciii.2024.p0768-18 key-10.20965/jaciii.2024.p0768-19 |
| References_xml | – ident: key-10.20965/jaciii.2024.p0768-3 doi: 10.1109/ICCUBEA.2018.8697857 – ident: key-10.20965/jaciii.2024.p0768-9 doi: 10.1109/ICCV.2019.00972 – ident: key-10.20965/jaciii.2024.p0768-2 doi: 10.1109/CVPR.2016.255 – ident: key-10.20965/jaciii.2024.p0768-4 doi: 10.20965/jaciii.2018.p0683 – ident: key-10.20965/jaciii.2024.p0768-19 doi: 10.1109/CVPR42600.2020.00165 – ident: key-10.20965/jaciii.2024.p0768-1 – ident: key-10.20965/jaciii.2024.p0768-13 doi: 10.20965/jaciii.2017.p0834 – ident: key-10.20965/jaciii.2024.p0768-6 doi: 10.1109/TPAMI.2016.2577031 – ident: key-10.20965/jaciii.2024.p0768-16 – ident: key-10.20965/jaciii.2024.p0768-17 – ident: key-10.20965/jaciii.2024.p0768-20 doi: 10.1109/CVPR.2017.195 – ident: key-10.20965/jaciii.2024.p0768-7 doi: 10.1109/CVPR.2016.91 – ident: key-10.20965/jaciii.2024.p0768-14 – ident: key-10.20965/jaciii.2024.p0768-15 – ident: key-10.20965/jaciii.2024.p0768-11 doi: 10.20965/jaciii.2017.p0632 – ident: key-10.20965/jaciii.2024.p0768-5 doi: 10.1088/1742-6596/1952/2/022055 – ident: key-10.20965/jaciii.2024.p0768-10 – ident: key-10.20965/jaciii.2024.p0768-12 – ident: key-10.20965/jaciii.2024.p0768-18 doi: 10.3724/SP.J.1089.2019.17283 – ident: key-10.20965/jaciii.2024.p0768-8 doi: 10.1007/978-3-319-46448-0_2 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.2953322 |
| Snippet | In this study, we propose YOLOv5s-PGD algorithm for dense pedestrian detection, which can improve the recall and reduce the number of parameters compared with... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 768 |
| SubjectTerms | Accuracy Algorithms Convolution Informatics Object recognition Parameters Pedestrians Real time |
| Title | Improved Pedestrian Detection Algorithm Based on YOLOv5s |
| URI | https://www.proquest.com/docview/3082594999 |
| Volume | 28 |
| WOSCitedRecordID | wos001346228100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLagZWChnKJQqgxsKDTxkdgTaqEVElUbIUCFJWp8cAjS0oT-fmwnUdWFhSWDLVnWl-d3-fl7AJwHTFHoY-4iLKAOUALoMoGISxLGvYQryuxbmKdhOBrRyYRFZcItK8sqK51oFbWYcZMj7xhaFWKYVNjV_Ns1XaPM7WrZQmMT1A1LgmndEJGXSp6IDgW0h-Cvci7aV_FwEYNhU0aEvOIdDTQcKJ2PKTeEDlCbrcu5uaFat1Xrqtran0HjvzvfBTul5-l0C1HZAxsy3QeNqquDUx7yA0CLPIMUTiSFtG09UudG5rZmK3W6n6968fzty-lpAygcPfQ8Ho6XJDsEj4P-w_WtW_ZXcDmCKHexJJLr3SUopFK7GipgPhYUK8wUgfofTpHww2kimZ5LMJEiUNDw1VOSIAUJOgK1dJbKY-AkFHEhEoJCwTFDnAoVcEGZ8JjWEmHYBBcVkvG8oNGIdfhhcY8L3GODe2xxb4JWhWRcHqksXsF48vf0Kdg2S5kELPRaoJYvfuQZ2OLL_D1btEG91x9F920bfOvvXei2rdT8Aqe1xDk |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V07T8MwED4hQIKFN-JRwANMKJD6kdgDQoWCQC0tAyCYQmM7PASh0FDEn-I3ck4aoS5sDKyxZNn5zne-8919AJuBSiStcu0xbig6KAH1lGHCE7HSfqwTqfJamKtm2GrJ62t1PgJfZS2MS6ssdWKuqM2LdjHyXddWRbhOKmq_--o51ij3ulpSaBRi0bCfH-iy9fZO64jvFqXHRxeHJ96AVcDTjLLM41ZYjbPFLJQWDWwSqCo3kidcJYLiyjvMVMNObBWOxVxYEyTUdWmXImYJdSwRqPLHOJOhO1eN0CvlV6DrgTeS6k-MB-9GPi98Pu7Slphf1O1Q13Nl97GjXQMJimZyp-texIZt47BpyO3d8fR_-1MzMDW4WZNacRRmYcSmczBdslaQgRKbB1nEUawh59bYnLYkJXWb5TlpKak93eFmsvtncoAG3hD8dNNutvuitwCXf7L-RRhNX1K7BCSWTBsTCxYazRXT0iSBNlIZX6EWDMNl2C6Ri7pFm5AI3asc56jAOXI4RznOy1ApkYsGKqMX_cC28vvwBkycXJw1o-Zpq7EKk25aF2ymfgVGs7d3uwbjup899N7Wc-kkcPvXIH8D-XwcbA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Pedestrian+Detection+Algorithm+Based+on+YOLOv5s&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Li%2C+Zhihua&rft.au=Zhang%2C+Yuanbiao&rft.au=Wang%2C+Chao&rft.au=Tan%2C+Guopeng&rft.date=2024-07-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=28&rft.issue=4&rft.spage=768&rft.epage=775&rft_id=info:doi/10.20965%2Fjaciii.2024.p0768&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2024_p0768 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |