Fuzzy nonlinear regression with fuzzified radial basis function network
A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of...
Saved in:
| Published in: | IEEE transactions on fuzzy systems Vol. 13; no. 6; pp. 742 - 760 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.12.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1063-6706, 1941-0034 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of fuzzy expert system. Hence it owns the advantages of simple structure and clear physical meaning. Some metrics for fuzzy numbers have been extended to the metrics for n-dimensional fuzzy vectors, which are applicable to computations in FRBFNs. The corresponding metric spaces for n-dimensional fuzzy vectors are proved to be complete. Further, FRBFNs are proved to be able to act as universal function approximators for any continuous fuzzy function defined on a compact set. This paper applies the proposed FRBFN to nonparametric fuzzy nonlinear regression problems for multidimensional LR-type fuzzy data. Fuzzy nonlinear regression with FRBFNs can be formulated as a nonlinear mathematical programming problem. Two training algorithms are proposed to quickly solve the two types of problems under different criteria and constraint conditions, namely, the two-stage and BP (Back-Propagation) training algorithms. Simulation studies are carried out to verify the feasibility and demonstrate the advantages of the proposed approaches. |
|---|---|
| AbstractList | [...] it owns the advantages of simple structure and clear physical meaning. A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of fuzzy expert system. Hence it owns the advantages of simple structure and clear physical meaning. Some metrics for fuzzy numbers have been extended to the metrics for n-dimensional fuzzy vectors, which are applicable to computations in FRBFNs. The corresponding metric spaces for n-dimensional fuzzy vectors are proved to be complete. Further, FRBFNs are proved to be able to act as universal function approximators for any continuous fuzzy function defined on a compact set. This paper applies the proposed FRBFN to nonparametric fuzzy nonlinear regression problems for multidimensional LR-type fuzzy data. Fuzzy nonlinear regression with FRBFNs can be formulated as a nonlinear mathematical programming problem. Two training algorithms are proposed to quickly solve the two types of problems under different criteria and constraint conditions, namely, the two-stage and BP (Back-Propagation) training algorithms. Simulation studies are carried out to verify the feasibility and demonstrate the advantages of the proposed approaches. |
| Author | Dong Zhang Kai-Yuan Cai Luo-Feng Deng So, A. |
| Author_xml | – sequence: 1 surname: Dong Zhang fullname: Dong Zhang organization: Dept. of Autom. Control, Beihang Univ., Beijing, China – sequence: 2 surname: Luo-Feng Deng fullname: Luo-Feng Deng organization: Dept. of Autom. Control, Beihang Univ., Beijing, China – sequence: 3 surname: Kai-Yuan Cai fullname: Kai-Yuan Cai organization: Dept. of Autom. Control, Beihang Univ., Beijing, China – sequence: 4 givenname: A. surname: So fullname: So, A. |
| BookMark | eNp9kMFKAzEQhoNU0FYfQLwsHrxtnSSbTfYoxVZB8GIvvYQ0mdXouqvJlmKf3qwVBA9CIGHy_cPMNyajtmuRkDMKU0qhunqcL1erKQMQUyUqDvKAHNOqoDkAL0bpDSXPSwnlERnH-AJAC0HVMVnMN7vdZ5a6Nb5FE7KATwFj9F2bbX3_nNXp39ceXRaM86bJ1ib6mMqt7QeoxX7bhdcTclibJuLpzz0hy_nN4-w2v39Y3M2u73PLGe9zZsBK5op1yUyJKJWUFJlxpqiMVU4UvJbOMRCKIadrCc4pJdbWIiikjvMJudz3fQ_dxwZjr998tNg0psVuEzVTQLlMBibk4g_40m1Cm2bTFQNWFekkSO4hG7oYA9ba-t4Me_XB-EZT0INd_W1XD3b13m5K0j_J9-DfTPj8N3O-z3hE_OWFKIWi_AuPbokF |
| CODEN | IEFSEV |
| CitedBy_id | crossref_primary_10_1007_s10700_020_09316_x crossref_primary_10_1007_s00521_009_0280_0 crossref_primary_10_1007_s00500_023_09191_9 crossref_primary_10_1109_TFUZZ_2009_2026891 crossref_primary_10_1016_j_asoc_2019_105708 crossref_primary_10_1109_TFUZZ_2008_924216 crossref_primary_10_1016_j_mcm_2008_12_013 crossref_primary_10_1109_TSMC_2021_3076747 crossref_primary_10_1016_j_camwa_2010_06_049 crossref_primary_10_1109_TFUZZ_2024_3387429 crossref_primary_10_1109_TFUZZ_2024_3418902 crossref_primary_10_1016_j_fss_2013_08_011 crossref_primary_10_1155_2013_210164 crossref_primary_10_1016_j_ins_2014_03_090 crossref_primary_10_1109_TFUZZ_2007_896275 crossref_primary_10_1007_s00500_020_05008_1 crossref_primary_10_1016_j_chemolab_2016_07_012 crossref_primary_10_1016_j_ins_2016_01_037 crossref_primary_10_1109_TNNLS_2012_2227794 |
| Cites_doi | 10.1016/0165-0114(94)00179-B 10.1109/TSMC.1982.4308925 10.1109/91.618273 10.1016/0165-0114(93)90503-A 10.1016/S0165-0114(97)00277-7 10.1080/00207727808941724 10.1016/0165-0114(87)90029-7 10.1109/21.256541 10.1016/0167-8655(91)90002-4 10.1109/91.227388 10.3156/jfuzzy.4.1_52 10.1016/0165-0114(87)90070-4 10.1016/0270-0255(87)90468-4 10.1137/0912029 10.1016/0165-0114(94)90297-6 10.1016/0165-0114(92)90224-R 10.1016/0888-613X(94)90006-X 10.1109/3477.790443 10.1016/0165-0114(91)90218-F 10.1080/01969727308546046 10.1016/0022-247X(81)90141-4 10.1109/3477.552181 10.1109/91.251928 10.1016/0022-247X(83)90169-5 10.1016/0165-0114(94)00281-B 10.1016/S0165-0114(97)00393-X 10.1016/0165-0114(95)00308-8 10.1016/S0165-0114(99)00091-3 10.1007/978-94-011-2506-2 10.1109/72.182710 10.1142/2326 10.1109/NAFIPS.2001.943671 10.1016/S0165-0114(99)00098-6 10.1016/0165-0114(90)90064-D 10.1016/0888-613X(95)00060-T 10.1016/S0165-0114(01)00066-5 10.1109/72.159070 10.1016/S0165-0114(83)80107-9 10.1016/S0165-0114(97)00269-8 10.1162/neco.1989.1.2.281 10.1214/aop/1176992822 10.1016/S0165-0114(98)00370-4 10.1007/978-94-015-7949-0 10.1016/0020-0255(88)90047-3 10.1016/0022-247X(86)90093-4 10.1109/FUZZY.1999.793078 10.1016/0165-0114(90)90197-E 10.1016/0165-0114(94)90283-6 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1109/TFUZZ.2005.859307 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1941-0034 |
| EndPage | 760 |
| ExternalDocumentID | 2581138271 10_1109_TFUZZ_2005_859307 1556581 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c323t-2a0c72d4b62a6ee78771e2ada49ac8d543f7dd20582e31b70dd885bcce08e1d33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233973500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1063-6706 |
| IngestDate | Sat Sep 27 22:36:18 EDT 2025 Sun Nov 09 08:49:40 EST 2025 Tue Nov 18 21:00:57 EST 2025 Sat Nov 29 08:09:25 EST 2025 Tue Aug 26 16:40:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c323t-2a0c72d4b62a6ee78771e2ada49ac8d543f7dd20582e31b70dd885bcce08e1d33 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 content type line 23 |
| PQID | 920294294 |
| PQPubID | 85428 |
| PageCount | 19 |
| ParticipantIDs | ieee_primary_1556581 proquest_miscellaneous_28013759 crossref_citationtrail_10_1109_TFUZZ_2005_859307 crossref_primary_10_1109_TFUZZ_2005_859307 proquest_journals_920294294 |
| PublicationCentury | 2000 |
| PublicationDate | 2005-Dec. 2005-12-00 20051201 |
| PublicationDateYYYYMMDD | 2005-12-01 |
| PublicationDate_xml | – month: 12 year: 2005 text: 2005-Dec. |
| PublicationDecade | 2000 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on fuzzy systems |
| PublicationTitleAbbrev | TFUZZ |
| PublicationYear | 2005 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 Dubois (ref34) 1980 ref10 Zhang (ref43) ref17 ref16 Demuth (ref40) 1998 ref19 ref18 ref51 ref50 ref45 ref48 ref47 ref42 ref44 ref49 Savic (ref41) 1994; 64 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 Kaufmann (ref46) 1985 ref28 ref27 ref29 Klement (ref54); 407 |
| References_xml | – ident: ref3 doi: 10.1016/0165-0114(94)00179-B – ident: ref1 doi: 10.1109/TSMC.1982.4308925 – volume: 407 start-page: 171 volume-title: Proc. Royal Soc., London A ident: ref54 article-title: Limit theorems for fuzzy random variables – ident: ref23 doi: 10.1109/91.618273 – ident: ref22 doi: 10.1016/0165-0114(93)90503-A – ident: ref30 doi: 10.1016/S0165-0114(97)00277-7 – ident: ref52 doi: 10.1080/00207727808941724 – ident: ref45 doi: 10.1016/0165-0114(87)90029-7 – volume-title: Neural Network Toolbox User’s Guide (Version 3.0) year: 1998 ident: ref40 – ident: ref37 doi: 10.1109/21.256541 – ident: ref39 doi: 10.1016/0167-8655(91)90002-4 – ident: ref12 doi: 10.1109/91.227388 – ident: ref44 doi: 10.3156/jfuzzy.4.1_52 – volume-title: Introduction to Fuzzy Arithmetic: Theory and Applications year: 1985 ident: ref46 – ident: ref4 doi: 10.1016/0165-0114(87)90070-4 – ident: ref5 doi: 10.1016/0270-0255(87)90468-4 – ident: ref43 article-title: Fuzzified RBFN’s can arbitrarily approximate any continuous fuzzy functions publication-title: Acta Automatica Sinica – ident: ref6 doi: 10.1137/0912029 – ident: ref20 doi: 10.1016/0165-0114(94)90297-6 – ident: ref11 doi: 10.1016/0165-0114(92)90224-R – ident: ref13 doi: 10.1016/0888-613X(94)90006-X – ident: ref18 doi: 10.1109/3477.790443 – ident: ref2 doi: 10.1016/0165-0114(91)90218-F – volume: 64 start-page: 361 year: 1994 ident: ref41 article-title: Evaluation of fuzzy regression models publication-title: Fuzzy Sets Syst. – ident: ref42 doi: 10.1080/01969727308546046 – ident: ref48 doi: 10.1016/0022-247X(81)90141-4 – ident: ref31 doi: 10.1109/3477.552181 – ident: ref27 doi: 10.1109/91.251928 – volume-title: Fuzzy Sets and Systems: Theory and Applications year: 1980 ident: ref34 – ident: ref49 doi: 10.1016/0022-247X(83)90169-5 – ident: ref14 doi: 10.1016/0165-0114(94)00281-B – ident: ref19 doi: 10.1016/S0165-0114(97)00393-X – ident: ref29 doi: 10.1016/0165-0114(95)00308-8 – ident: ref10 doi: 10.1016/S0165-0114(99)00091-3 – ident: ref32 doi: 10.1007/978-94-011-2506-2 – ident: ref38 doi: 10.1109/72.182710 – ident: ref47 doi: 10.1142/2326 – ident: ref25 doi: 10.1109/NAFIPS.2001.943671 – ident: ref24 doi: 10.1016/S0165-0114(99)00098-6 – ident: ref8 doi: 10.1016/0165-0114(90)90064-D – ident: ref15 doi: 10.1016/0888-613X(95)00060-T – ident: ref28 doi: 10.1016/S0165-0114(01)00066-5 – ident: ref26 doi: 10.1109/72.159070 – ident: ref53 doi: 10.1016/S0165-0114(83)80107-9 – ident: ref9 doi: 10.1016/S0165-0114(97)00269-8 – ident: ref36 doi: 10.1162/neco.1989.1.2.281 – ident: ref50 doi: 10.1214/aop/1176992822 – ident: ref16 doi: 10.1016/S0165-0114(98)00370-4 – ident: ref33 doi: 10.1007/978-94-015-7949-0 – ident: ref7 doi: 10.1016/0020-0255(88)90047-3 – ident: ref35 doi: 10.1016/0022-247X(86)90093-4 – ident: ref17 doi: 10.1109/FUZZY.1999.793078 – ident: ref51 doi: 10.1016/0165-0114(90)90197-E – ident: ref21 doi: 10.1016/0165-0114(94)90283-6 |
| SSID | ssj0014518 |
| Score | 1.9579663 |
| Snippet | A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model... [...] it owns the advantages of simple structure and clear physical meaning. |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 742 |
| SubjectTerms | Algorithms Fuzzified radial basis function network (FRBFN) Fuzzy logic fuzzy neural network Fuzzy neural networks fuzzy number fuzzy regression Fuzzy sets Hybrid intelligent systems Mathematical programming Measurement errors Multidimensional systems Neural networks Radial basis function networks Regression analysis Statistical analysis Studies universal approximation |
| Title | Fuzzy nonlinear regression with fuzzified radial basis function network |
| URI | https://ieeexplore.ieee.org/document/1556581 https://www.proquest.com/docview/920294294 https://www.proquest.com/docview/28013759 |
| Volume | 13 |
| WOSCitedRecordID | wos000233973500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0034 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014518 issn: 1063-6706 databaseCode: RIE dateStart: 19930101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9zMGTWE2TtEmOIq6exIOCeClpMpUF6Up3V9Bfb9J0V0ERvBWSlpDJ9CWZmfcAjtE6bZm0ic1kCDNyTIxwNHFKGl6WFaUmik3I21v1-Kjv5uB0VguDiG3yGZ6FxzaW74Z2Eq7Kzj32ecD0Z515KfNYqzWLGIgsjWVvOU9ySfMugplSfX7ff3h6itcngd0rKMd-w6BWVOXHn7iFl_7q_wa2BivdNpJcRLuvwxzWG7A6lWggncduwPI3vsFNuO5PPj7eSR3pMUxDGnyOebA1CReypPLtg8rvSkkTOAteiAe5wYgE8AsGJHVMGt-Ch_7V_eVN0ikpJJYzPk6YoVYyJ8qcmRzRO6lMkRlnhDZWuUzwSjrHaKYY8rSU1DmlstJapApTx_k2LPix4Q4QnTslRKkDa4woK2N0aXNTZUo6obSTPaDTuS1sRzMe1C5eiva4QXXRmiPIX2ZFNEcPTmavvEaOjb86b4b5_-oYp74He1MDFp0XjgrNKNMecEUPjmat3n1CTMTUOJyMCqYC52Kmd3__7B4sRa7WkL-yDwvjZoIHsGjfxoNRc9iuwE8fgNsK |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB5KLagPVlvFs9bmwSdxbTbJbpLHIr22WA8frlD6smST2XJQtrJ3J9hfb2azdy0oQt8Wkl1CJrNfkpn5PoCP6IP1QvvMF5rCjBIzpwLPgtFO1nXDuUtiE3oyMZeX9scGfF7XwiBin3yGX-ixj-WHW7-kq7LDiH0RMONZ5wkpZw3VWuuYgSryVPhWyqzUvBximDm3h9PxxdVVukAhfi_Sjn2AQr2syl__4h5gxtuPG9pLeDFsJNlRsvwr2MB2B7ZXIg1s8NkdeP6AcXAXTsbLu7vfrE0EGa5jHV6nTNiW0ZUsa2L7rIn7UtYRa8ENizA3mzOCPzIha1Pa-Gu4GB9Pv55mg5ZC5qWQi0w47rUIqi6FKxGjm-ochQtOWedNKJRsdAiCF0agzGvNQzCmqL1HbjAPUr6BzTg2fAvMlsEoVVvijVF145ytfemawuigjA16BHw1t5UfiMZJ7-Km6g8c3Fa9OUgAs6iSOUbwaf3Kz8Sy8b_OuzT_9x3T1I9gb2XAavDDeWUFFzZCrhrBwbo1OhBFRVyLt8t5JQyxLhb23b8_ewBPT6ffz6vzs8m3PXiWmFspm-U9bC66Je7Dlv-1mM27D_1q_AOuXt5T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+nonlinear+regression+with+fuzzified+radial+basis+function+network&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Dong+Zhang&rft.au=Luo-Feng+Deng&rft.au=Kai-Yuan+Cai&rft.au=So%2C+A.&rft.date=2005-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=13&rft.issue=6&rft.spage=742&rft.epage=760&rft_id=info:doi/10.1109%2FTFUZZ.2005.859307&rft.externalDocID=1556581 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon |