Fuzzy nonlinear regression with fuzzified radial basis function network

A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on fuzzy systems Vol. 13; no. 6; pp. 742 - 760
Main Authors: Dong Zhang, Luo-Feng Deng, Kai-Yuan Cai, So, A.
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1063-6706, 1941-0034
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of fuzzy expert system. Hence it owns the advantages of simple structure and clear physical meaning. Some metrics for fuzzy numbers have been extended to the metrics for n-dimensional fuzzy vectors, which are applicable to computations in FRBFNs. The corresponding metric spaces for n-dimensional fuzzy vectors are proved to be complete. Further, FRBFNs are proved to be able to act as universal function approximators for any continuous fuzzy function defined on a compact set. This paper applies the proposed FRBFN to nonparametric fuzzy nonlinear regression problems for multidimensional LR-type fuzzy data. Fuzzy nonlinear regression with FRBFNs can be formulated as a nonlinear mathematical programming problem. Two training algorithms are proposed to quickly solve the two types of problems under different criteria and constraint conditions, namely, the two-stage and BP (Back-Propagation) training algorithms. Simulation studies are carried out to verify the feasibility and demonstrate the advantages of the proposed approaches.
AbstractList [...] it owns the advantages of simple structure and clear physical meaning.
A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model RBFN. A FRBFN contains fuzzy weights and can handle fuzzy-in fuzzy-out data. This paper shows that a FRBFN can also be interpreted as a kind of fuzzy expert system. Hence it owns the advantages of simple structure and clear physical meaning. Some metrics for fuzzy numbers have been extended to the metrics for n-dimensional fuzzy vectors, which are applicable to computations in FRBFNs. The corresponding metric spaces for n-dimensional fuzzy vectors are proved to be complete. Further, FRBFNs are proved to be able to act as universal function approximators for any continuous fuzzy function defined on a compact set. This paper applies the proposed FRBFN to nonparametric fuzzy nonlinear regression problems for multidimensional LR-type fuzzy data. Fuzzy nonlinear regression with FRBFNs can be formulated as a nonlinear mathematical programming problem. Two training algorithms are proposed to quickly solve the two types of problems under different criteria and constraint conditions, namely, the two-stage and BP (Back-Propagation) training algorithms. Simulation studies are carried out to verify the feasibility and demonstrate the advantages of the proposed approaches.
Author Dong Zhang
Kai-Yuan Cai
Luo-Feng Deng
So, A.
Author_xml – sequence: 1
  surname: Dong Zhang
  fullname: Dong Zhang
  organization: Dept. of Autom. Control, Beihang Univ., Beijing, China
– sequence: 2
  surname: Luo-Feng Deng
  fullname: Luo-Feng Deng
  organization: Dept. of Autom. Control, Beihang Univ., Beijing, China
– sequence: 3
  surname: Kai-Yuan Cai
  fullname: Kai-Yuan Cai
  organization: Dept. of Autom. Control, Beihang Univ., Beijing, China
– sequence: 4
  givenname: A.
  surname: So
  fullname: So, A.
BookMark eNp9kMFKAzEQhoNU0FYfQLwsHrxtnSSbTfYoxVZB8GIvvYQ0mdXouqvJlmKf3qwVBA9CIGHy_cPMNyajtmuRkDMKU0qhunqcL1erKQMQUyUqDvKAHNOqoDkAL0bpDSXPSwnlERnH-AJAC0HVMVnMN7vdZ5a6Nb5FE7KATwFj9F2bbX3_nNXp39ceXRaM86bJ1ib6mMqt7QeoxX7bhdcTclibJuLpzz0hy_nN4-w2v39Y3M2u73PLGe9zZsBK5op1yUyJKJWUFJlxpqiMVU4UvJbOMRCKIadrCc4pJdbWIiikjvMJudz3fQ_dxwZjr998tNg0psVuEzVTQLlMBibk4g_40m1Cm2bTFQNWFekkSO4hG7oYA9ba-t4Me_XB-EZT0INd_W1XD3b13m5K0j_J9-DfTPj8N3O-z3hE_OWFKIWi_AuPbokF
CODEN IEFSEV
CitedBy_id crossref_primary_10_1007_s10700_020_09316_x
crossref_primary_10_1007_s00521_009_0280_0
crossref_primary_10_1007_s00500_023_09191_9
crossref_primary_10_1109_TFUZZ_2009_2026891
crossref_primary_10_1016_j_asoc_2019_105708
crossref_primary_10_1109_TFUZZ_2008_924216
crossref_primary_10_1016_j_mcm_2008_12_013
crossref_primary_10_1109_TSMC_2021_3076747
crossref_primary_10_1016_j_camwa_2010_06_049
crossref_primary_10_1109_TFUZZ_2024_3387429
crossref_primary_10_1109_TFUZZ_2024_3418902
crossref_primary_10_1016_j_fss_2013_08_011
crossref_primary_10_1155_2013_210164
crossref_primary_10_1016_j_ins_2014_03_090
crossref_primary_10_1109_TFUZZ_2007_896275
crossref_primary_10_1007_s00500_020_05008_1
crossref_primary_10_1016_j_chemolab_2016_07_012
crossref_primary_10_1016_j_ins_2016_01_037
crossref_primary_10_1109_TNNLS_2012_2227794
Cites_doi 10.1016/0165-0114(94)00179-B
10.1109/TSMC.1982.4308925
10.1109/91.618273
10.1016/0165-0114(93)90503-A
10.1016/S0165-0114(97)00277-7
10.1080/00207727808941724
10.1016/0165-0114(87)90029-7
10.1109/21.256541
10.1016/0167-8655(91)90002-4
10.1109/91.227388
10.3156/jfuzzy.4.1_52
10.1016/0165-0114(87)90070-4
10.1016/0270-0255(87)90468-4
10.1137/0912029
10.1016/0165-0114(94)90297-6
10.1016/0165-0114(92)90224-R
10.1016/0888-613X(94)90006-X
10.1109/3477.790443
10.1016/0165-0114(91)90218-F
10.1080/01969727308546046
10.1016/0022-247X(81)90141-4
10.1109/3477.552181
10.1109/91.251928
10.1016/0022-247X(83)90169-5
10.1016/0165-0114(94)00281-B
10.1016/S0165-0114(97)00393-X
10.1016/0165-0114(95)00308-8
10.1016/S0165-0114(99)00091-3
10.1007/978-94-011-2506-2
10.1109/72.182710
10.1142/2326
10.1109/NAFIPS.2001.943671
10.1016/S0165-0114(99)00098-6
10.1016/0165-0114(90)90064-D
10.1016/0888-613X(95)00060-T
10.1016/S0165-0114(01)00066-5
10.1109/72.159070
10.1016/S0165-0114(83)80107-9
10.1016/S0165-0114(97)00269-8
10.1162/neco.1989.1.2.281
10.1214/aop/1176992822
10.1016/S0165-0114(98)00370-4
10.1007/978-94-015-7949-0
10.1016/0020-0255(88)90047-3
10.1016/0022-247X(86)90093-4
10.1109/FUZZY.1999.793078
10.1016/0165-0114(90)90197-E
10.1016/0165-0114(94)90283-6
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TFUZZ.2005.859307
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1941-0034
EndPage 760
ExternalDocumentID 2581138271
10_1109_TFUZZ_2005_859307
1556581
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c323t-2a0c72d4b62a6ee78771e2ada49ac8d543f7dd20582e31b70dd885bcce08e1d33
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233973500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1063-6706
IngestDate Sat Sep 27 22:36:18 EDT 2025
Sun Nov 09 08:49:40 EST 2025
Tue Nov 18 21:00:57 EST 2025
Sat Nov 29 08:09:25 EST 2025
Tue Aug 26 16:40:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c323t-2a0c72d4b62a6ee78771e2ada49ac8d543f7dd20582e31b70dd885bcce08e1d33
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 920294294
PQPubID 85428
PageCount 19
ParticipantIDs ieee_primary_1556581
proquest_miscellaneous_28013759
crossref_citationtrail_10_1109_TFUZZ_2005_859307
crossref_primary_10_1109_TFUZZ_2005_859307
proquest_journals_920294294
PublicationCentury 2000
PublicationDate 2005-Dec.
2005-12-00
20051201
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-Dec.
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on fuzzy systems
PublicationTitleAbbrev TFUZZ
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
Dubois (ref34) 1980
ref10
Zhang (ref43)
ref17
ref16
Demuth (ref40) 1998
ref19
ref18
ref51
ref50
ref45
ref48
ref47
ref42
ref44
ref49
Savic (ref41) 1994; 64
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Kaufmann (ref46) 1985
ref28
ref27
ref29
Klement (ref54); 407
References_xml – ident: ref3
  doi: 10.1016/0165-0114(94)00179-B
– ident: ref1
  doi: 10.1109/TSMC.1982.4308925
– volume: 407
  start-page: 171
  volume-title: Proc. Royal Soc., London A
  ident: ref54
  article-title: Limit theorems for fuzzy random variables
– ident: ref23
  doi: 10.1109/91.618273
– ident: ref22
  doi: 10.1016/0165-0114(93)90503-A
– ident: ref30
  doi: 10.1016/S0165-0114(97)00277-7
– ident: ref52
  doi: 10.1080/00207727808941724
– ident: ref45
  doi: 10.1016/0165-0114(87)90029-7
– volume-title: Neural Network Toolbox User’s Guide (Version 3.0)
  year: 1998
  ident: ref40
– ident: ref37
  doi: 10.1109/21.256541
– ident: ref39
  doi: 10.1016/0167-8655(91)90002-4
– ident: ref12
  doi: 10.1109/91.227388
– ident: ref44
  doi: 10.3156/jfuzzy.4.1_52
– volume-title: Introduction to Fuzzy Arithmetic: Theory and Applications
  year: 1985
  ident: ref46
– ident: ref4
  doi: 10.1016/0165-0114(87)90070-4
– ident: ref5
  doi: 10.1016/0270-0255(87)90468-4
– ident: ref43
  article-title: Fuzzified RBFN’s can arbitrarily approximate any continuous fuzzy functions
  publication-title: Acta Automatica Sinica
– ident: ref6
  doi: 10.1137/0912029
– ident: ref20
  doi: 10.1016/0165-0114(94)90297-6
– ident: ref11
  doi: 10.1016/0165-0114(92)90224-R
– ident: ref13
  doi: 10.1016/0888-613X(94)90006-X
– ident: ref18
  doi: 10.1109/3477.790443
– ident: ref2
  doi: 10.1016/0165-0114(91)90218-F
– volume: 64
  start-page: 361
  year: 1994
  ident: ref41
  article-title: Evaluation of fuzzy regression models
  publication-title: Fuzzy Sets Syst.
– ident: ref42
  doi: 10.1080/01969727308546046
– ident: ref48
  doi: 10.1016/0022-247X(81)90141-4
– ident: ref31
  doi: 10.1109/3477.552181
– ident: ref27
  doi: 10.1109/91.251928
– volume-title: Fuzzy Sets and Systems: Theory and Applications
  year: 1980
  ident: ref34
– ident: ref49
  doi: 10.1016/0022-247X(83)90169-5
– ident: ref14
  doi: 10.1016/0165-0114(94)00281-B
– ident: ref19
  doi: 10.1016/S0165-0114(97)00393-X
– ident: ref29
  doi: 10.1016/0165-0114(95)00308-8
– ident: ref10
  doi: 10.1016/S0165-0114(99)00091-3
– ident: ref32
  doi: 10.1007/978-94-011-2506-2
– ident: ref38
  doi: 10.1109/72.182710
– ident: ref47
  doi: 10.1142/2326
– ident: ref25
  doi: 10.1109/NAFIPS.2001.943671
– ident: ref24
  doi: 10.1016/S0165-0114(99)00098-6
– ident: ref8
  doi: 10.1016/0165-0114(90)90064-D
– ident: ref15
  doi: 10.1016/0888-613X(95)00060-T
– ident: ref28
  doi: 10.1016/S0165-0114(01)00066-5
– ident: ref26
  doi: 10.1109/72.159070
– ident: ref53
  doi: 10.1016/S0165-0114(83)80107-9
– ident: ref9
  doi: 10.1016/S0165-0114(97)00269-8
– ident: ref36
  doi: 10.1162/neco.1989.1.2.281
– ident: ref50
  doi: 10.1214/aop/1176992822
– ident: ref16
  doi: 10.1016/S0165-0114(98)00370-4
– ident: ref33
  doi: 10.1007/978-94-015-7949-0
– ident: ref7
  doi: 10.1016/0020-0255(88)90047-3
– ident: ref35
  doi: 10.1016/0022-247X(86)90093-4
– ident: ref17
  doi: 10.1109/FUZZY.1999.793078
– ident: ref51
  doi: 10.1016/0165-0114(90)90197-E
– ident: ref21
  doi: 10.1016/0165-0114(94)90283-6
SSID ssj0014518
Score 1.9579663
Snippet A fuzzified radial basis function network (FRBFN) is a kind of fuzzy neural network that is obtained by direct fuzzification of the well known neural model...
[...] it owns the advantages of simple structure and clear physical meaning.
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 742
SubjectTerms Algorithms
Fuzzified radial basis function network (FRBFN)
Fuzzy logic
fuzzy neural network
Fuzzy neural networks
fuzzy number
fuzzy regression
Fuzzy sets
Hybrid intelligent systems
Mathematical programming
Measurement errors
Multidimensional systems
Neural networks
Radial basis function networks
Regression analysis
Statistical analysis
Studies
universal approximation
Title Fuzzy nonlinear regression with fuzzified radial basis function network
URI https://ieeexplore.ieee.org/document/1556581
https://www.proquest.com/docview/920294294
https://www.proquest.com/docview/28013759
Volume 13
WOSCitedRecordID wos000233973500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0034
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014518
  issn: 1063-6706
  databaseCode: RIE
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8QwEB1UPOjBb3H9zMGTWE2TtEmOIq6exIOCeClpMpUF6Up3V9Bfb9J0V0ERvBWSlpDJ9CWZmfcAjtE6bZm0ic1kCDNyTIxwNHFKGl6WFaUmik3I21v1-Kjv5uB0VguDiG3yGZ6FxzaW74Z2Eq7Kzj32ecD0Z515KfNYqzWLGIgsjWVvOU9ySfMugplSfX7ff3h6itcngd0rKMd-w6BWVOXHn7iFl_7q_wa2BivdNpJcRLuvwxzWG7A6lWggncduwPI3vsFNuO5PPj7eSR3pMUxDGnyOebA1CReypPLtg8rvSkkTOAteiAe5wYgE8AsGJHVMGt-Ch_7V_eVN0ikpJJYzPk6YoVYyJ8qcmRzRO6lMkRlnhDZWuUzwSjrHaKYY8rSU1DmlstJapApTx_k2LPix4Q4QnTslRKkDa4woK2N0aXNTZUo6obSTPaDTuS1sRzMe1C5eiva4QXXRmiPIX2ZFNEcPTmavvEaOjb86b4b5_-oYp74He1MDFp0XjgrNKNMecEUPjmat3n1CTMTUOJyMCqYC52Kmd3__7B4sRa7WkL-yDwvjZoIHsGjfxoNRc9iuwE8fgNsK
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB5KLagPVlvFs9bmwSdxbTbJbpLHIr22WA8frlD6smST2XJQtrJ3J9hfb2azdy0oQt8Wkl1CJrNfkpn5PoCP6IP1QvvMF5rCjBIzpwLPgtFO1nXDuUtiE3oyMZeX9scGfF7XwiBin3yGX-ixj-WHW7-kq7LDiH0RMONZ5wkpZw3VWuuYgSryVPhWyqzUvBximDm3h9PxxdVVukAhfi_Sjn2AQr2syl__4h5gxtuPG9pLeDFsJNlRsvwr2MB2B7ZXIg1s8NkdeP6AcXAXTsbLu7vfrE0EGa5jHV6nTNiW0ZUsa2L7rIn7UtYRa8ENizA3mzOCPzIha1Pa-Gu4GB9Pv55mg5ZC5qWQi0w47rUIqi6FKxGjm-ochQtOWedNKJRsdAiCF0agzGvNQzCmqL1HbjAPUr6BzTg2fAvMlsEoVVvijVF145ytfemawuigjA16BHw1t5UfiMZJ7-Km6g8c3Fa9OUgAs6iSOUbwaf3Kz8Sy8b_OuzT_9x3T1I9gb2XAavDDeWUFFzZCrhrBwbo1OhBFRVyLt8t5JQyxLhb23b8_ewBPT6ffz6vzs8m3PXiWmFspm-U9bC66Je7Dlv-1mM27D_1q_AOuXt5T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fuzzy+nonlinear+regression+with+fuzzified+radial+basis+function+network&rft.jtitle=IEEE+transactions+on+fuzzy+systems&rft.au=Dong+Zhang&rft.au=Luo-Feng+Deng&rft.au=Kai-Yuan+Cai&rft.au=So%2C+A.&rft.date=2005-12-01&rft.pub=IEEE&rft.issn=1063-6706&rft.volume=13&rft.issue=6&rft.spage=742&rft.epage=760&rft_id=info:doi/10.1109%2FTFUZZ.2005.859307&rft.externalDocID=1556581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1063-6706&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1063-6706&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1063-6706&client=summon