Topology and FDIA identification in distribution system state estimation using a data-driven approach

In general, the solution of distribution system state estimation (DSSE) is highly dependent on the accuracy of measurement data and accurate topology data. Since the measurement devices are more vulnerable to different types of cyberattacks such as denial-of-service (DoS) attacks, outliers, and stru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 253; S. 117741
Hauptverfasser: Raghuvamsi, Y., Batchu, Sreenadh, Teeparthi, Kiran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2025
Schlagworte:
ISSN:0263-2241
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In general, the solution of distribution system state estimation (DSSE) is highly dependent on the accuracy of measurement data and accurate topology data. Since the measurement devices are more vulnerable to different types of cyberattacks such as denial-of-service (DoS) attacks, outliers, and structured false data injection attacks (FDIAs), the accuracy of DSSE is significantly affected. In addition, the topology identification is also affected when the measurements are used for the task of topology detection. To address these issues, a novel denoising autoencoder (DAE) is developed with the use of graph-based temporal convolutional layers in the encoder and decoder stages. The graph-based temporal convolutional DAE (G-TCDAE) utilizes the graph knowledge and temporal convolutional structure to understand the spatial correlations and temporal correlations among the input measurements respectively, which enhances the accuracy of reconstructed data against cyberattacks, and classification tasks of topology and FDIA locations. A DAE model can reconstruct the measurement data when input data are having cyberattacks which are considered as noise. In addition, the same model can identify the correct topology as well as measurements having FDIAs. The G-TCDAE model’s performance is assessed and compared with other types of DAE models by performing simulation works on modified IEEE 13-node and IEEE 37-node distribution test systems. The robustness of the model’s capability is tested at different percentages of cyberattacks and results demonstrated that the G-TCDAE model is highly skillful in achieving efficient performance. Also, the model performance is not significantly affected by the scalability which is tested with the IEEE 123-node distribution system. •A novel graph-based temporal convolutional DAE is developed for cyberattacks.•The proposed model is utilized for the detection of stealthy FDIAs.•Also, the same model is leveraged for topology identification.•The model’s output is used for the reconstruction of FDIA and missing data.•The model performance is compared with other DAE-based models.
AbstractList In general, the solution of distribution system state estimation (DSSE) is highly dependent on the accuracy of measurement data and accurate topology data. Since the measurement devices are more vulnerable to different types of cyberattacks such as denial-of-service (DoS) attacks, outliers, and structured false data injection attacks (FDIAs), the accuracy of DSSE is significantly affected. In addition, the topology identification is also affected when the measurements are used for the task of topology detection. To address these issues, a novel denoising autoencoder (DAE) is developed with the use of graph-based temporal convolutional layers in the encoder and decoder stages. The graph-based temporal convolutional DAE (G-TCDAE) utilizes the graph knowledge and temporal convolutional structure to understand the spatial correlations and temporal correlations among the input measurements respectively, which enhances the accuracy of reconstructed data against cyberattacks, and classification tasks of topology and FDIA locations. A DAE model can reconstruct the measurement data when input data are having cyberattacks which are considered as noise. In addition, the same model can identify the correct topology as well as measurements having FDIAs. The G-TCDAE model’s performance is assessed and compared with other types of DAE models by performing simulation works on modified IEEE 13-node and IEEE 37-node distribution test systems. The robustness of the model’s capability is tested at different percentages of cyberattacks and results demonstrated that the G-TCDAE model is highly skillful in achieving efficient performance. Also, the model performance is not significantly affected by the scalability which is tested with the IEEE 123-node distribution system. •A novel graph-based temporal convolutional DAE is developed for cyberattacks.•The proposed model is utilized for the detection of stealthy FDIAs.•Also, the same model is leveraged for topology identification.•The model’s output is used for the reconstruction of FDIA and missing data.•The model performance is compared with other DAE-based models.
ArticleNumber 117741
Author Raghuvamsi, Y.
Teeparthi, Kiran
Batchu, Sreenadh
Author_xml – sequence: 1
  givenname: Y.
  orcidid: 0000-0001-9816-7682
  surname: Raghuvamsi
  fullname: Raghuvamsi, Y.
  email: vamsi777raghu@lbrce.ac.in
  organization: Department of Electrical and Electronics Engineering, Lakireddy Bali Reddy College of Engineering, Mylavaram, Andhra Pradesh, 521230, India
– sequence: 2
  givenname: Sreenadh
  surname: Batchu
  fullname: Batchu, Sreenadh
  email: sreenadh@rguktn.ac.in
  organization: Department of Electrical and Electronics Engineering, Rajiv Gandhi University of Knowledge Technologies, Nuzvid, Andhra Pradesh, 521202, India
– sequence: 3
  givenname: Kiran
  orcidid: 0000-0001-6925-1957
  surname: Teeparthi
  fullname: Teeparthi, Kiran
  email: kiran.t39@nitandhra.ac.in
  organization: Department of Electrical Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, 534101, India
BookMark eNqNkE1uwjAQRr2gUoH2Du4BkvoncZJVhWhpkZC6oWvLsSfUiDiRbZC4fQPpouqKzYxGmu9p5s3QxHUOEHqiJKWEiud92oIKRw8tuJgywvKU0qLI6ARNCRM8YSyj92gWwp4QInglpgi2Xd8dut0ZK2fw6nW9wNYMcdtYraLtHLYOGxuit_XxOodziNDiEFUEDCHadtw7But2WGGjokqMtydwWPW975T-fkB3jToEePztc_S1etsuP5LN5_t6udgkmjMeE5bxsiBARK7qoXBucq0bXmgKRW2yphGkrIsqV5TVQum6KnWpBCO6VpkhjPA5qkau9l0IHhrZ--E-f5aUyIsjuZd_HMmLIzk6GrIv_7Laxutr0St7uImwHAkwvHiy4GXQFpwGYz3oKE1nb6D8ABjSkhY
CitedBy_id crossref_primary_10_3390_smartcities8050144
Cites_doi 10.1016/j.ijepes.2023.109464
10.1109/TII.2019.2921106
10.1109/TCNS.2019.2901714
10.1016/j.ijepes.2022.108612
10.1016/j.ijepes.2020.106441
10.1109/TPWRS.2021.3076671
10.1016/j.cose.2020.101994
10.1049/iet-cps.2017.0013
10.1109/TSG.2020.3010510
10.1109/TAI.2023.3286831
10.1016/j.epsr.2024.111149
10.1016/j.neucom.2016.12.109
10.1016/j.neucom.2020.06.001
10.3390/en12112209
10.1109/TSG.2017.2703842
10.1016/j.automatica.2023.111100
10.1049/iet-gtd.2018.6195
10.1109/TII.2018.2825243
10.1016/j.energy.2022.125865
10.1109/TCNS.2014.2357531
10.1109/TSG.2019.2895306
10.1016/j.epsr.2015.12.029
10.1016/j.cie.2021.107864
10.1109/TSG.2017.2675960
10.1109/NAPS58826.2023.10318579
10.1109/ICCV.2017.324
10.1109/TSG.2017.2758600
10.1016/j.neucom.2018.09.094
10.1109/TSG.2018.2813280
10.1016/j.apenergy.2022.118828
10.1109/ICASSP.2019.8683634
10.1109/TSG.2019.2933006
10.1109/TPWRS.2017.2779129
10.1109/TSG.2017.2680542
10.1016/j.measurement.2022.111259
10.1109/TSG.2021.3109628
10.1109/JIOT.2020.2983911
10.1109/ACCESS.2018.2856520
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2025.117741
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_measurement_2025_117741
S0263224125011005
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFRF
ABJNI
ABMAC
ABNEU
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SPD
SSH
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
WUQ
XPP
~HD
ID FETCH-LOGICAL-c323t-243870e065ab06533d5ccf37c1e7bd4ff608b795a12b6acb98c8a620cba4d0203
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001612756600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Sat Nov 29 07:49:09 EST 2025
Tue Nov 18 22:37:56 EST 2025
Sat Jul 05 17:10:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Distribution system state estimation
Graph-based temporal convolutional network
Denoising autoencoder
Line current sensors
False data injection attacks
Topology identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c323t-243870e065ab06533d5ccf37c1e7bd4ff608b795a12b6acb98c8a620cba4d0203
ORCID 0000-0001-6925-1957
0000-0001-9816-7682
ParticipantIDs crossref_primary_10_1016_j_measurement_2025_117741
crossref_citationtrail_10_1016_j_measurement_2025_117741
elsevier_sciencedirect_doi_10_1016_j_measurement_2025_117741
PublicationCentury 2000
PublicationDate 2025-09-01
2025-09-00
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Chen, Huang (b31) 2022; 314
Alam, Kundu, Sankar Thakur, Banerjee (b14) 2022; 196
Ashok, Govindarasu, Ajjarapu (b19) 2018; 9
Musleh, Chen, Yang Dong, Wang, Chen (b33) 2023; 145
Bai, Kolter, Koltun (b43) 2018
Zhuang, Deng, Liang (b13) 2019; 10
Manandhar, Cao, Hu, Liu (b18) 2014; 1
Deng, Zhuang, Liang (b12) 2019; 10
Ganjkhani, Fallah (b24) 2019; 12
Li, Wang, Lu (b34) 2023; 263
Farajollahi, Shahsavari, Mohsenian-Rad (b3) 2020; 11
Guo, Yuan (b42) 2020; 410
Wang, Chen (b25) 2018; 6
Ashrafuzzaman, Das (b26) 2020; 97
Cavraro, Kekatos, Veeramachaneni (b4) 2019; 10
Zhao, Liu, Zhao, Zhang, Xu, Xiang, Liu (b10) 2021; 125
Yang, Lei, Yang (b15) 2017; 270
Chen, Li, Zhong, Fei (b16) 2019; 344
Yu, Hou, Li (b23) 2018; 14
Li, Wang, Hu (b32) 2020; 16
Zhang, Li (b29) 2022; 13
Takiddin, Ismail, Atat, Davis, Serpedin (b36) 2024; 5
Sevlian, Rajagopal (b8) 2015
A. Pandey, D. Wang, TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 6875–6879.
Gotti, Amaris, Larrea (b1) 2021; 36
Wang, Bi, Zhang (b46) 2020; 7
Raghuvamsi, Teeparthi, Kosana (b11) 2023; 154
Zhang, Wang, Chen (b27) 2021; 12
Cavraro, Arghandeh (b5) 2018; 33
Ren, Cheng, Qin, Lu (b21) 2023; 154
T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal Loss for Dense Object Detection, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2999–3007.
Li, Hu, Lu (b37) 2024; 238
Abur, Gomez-Exposito (b39) 2004; vol. 24
He, Mendis, Wei (b22) 2017; 8
Mukherjee (b30) 2022; 31
Yang, Zhai, Li (b28) 2021; 193
Chen, Wu, Li, Xiahou (b35) 2023; 8
Hasnat, Anand, Tootkaboni, Alemazkoor (b38) 2025; 238
Moslemi, Mesbahi, Velni (b20) 2018; 9
S. Moshtagh, A.I. Sifat, B. Azimian, A. Pal, Time-Synchronized State Estimation Using Graph Neural Networks in Presence of Topology Changes, in: 2023 North American Power Symposium, NAPS, 2023, pp. 1–6.
Cavraro, Kekatos (b7) 2019; 6
Duan, Stewart (b9) 2019; 13
da Silva, Simões Costa, Clements, Andreoli (b2) 2016; 133
Pappu, Bhatt, Pasumarthy, Rajeswaran (b6) 2018; 9
Bao, Zhao, Yu, Zheng (b41) 2022; 163
Foroutan, Salmasi (b17) 2017; 2
Pappu (10.1016/j.measurement.2025.117741_b6) 2018; 9
Deng (10.1016/j.measurement.2025.117741_b12) 2019; 10
He (10.1016/j.measurement.2025.117741_b22) 2017; 8
Hasnat (10.1016/j.measurement.2025.117741_b38) 2025; 238
Bao (10.1016/j.measurement.2025.117741_b41) 2022; 163
Moslemi (10.1016/j.measurement.2025.117741_b20) 2018; 9
Zhang (10.1016/j.measurement.2025.117741_b29) 2022; 13
Cavraro (10.1016/j.measurement.2025.117741_b4) 2019; 10
Chen (10.1016/j.measurement.2025.117741_b16) 2019; 344
Takiddin (10.1016/j.measurement.2025.117741_b36) 2024; 5
Musleh (10.1016/j.measurement.2025.117741_b33) 2023; 145
Manandhar (10.1016/j.measurement.2025.117741_b18) 2014; 1
Li (10.1016/j.measurement.2025.117741_b34) 2023; 263
da Silva (10.1016/j.measurement.2025.117741_b2) 2016; 133
Li (10.1016/j.measurement.2025.117741_b32) 2020; 16
Ashrafuzzaman (10.1016/j.measurement.2025.117741_b26) 2020; 97
Li (10.1016/j.measurement.2025.117741_b37) 2024; 238
Abur (10.1016/j.measurement.2025.117741_b39) 2004; vol. 24
Bai (10.1016/j.measurement.2025.117741_b43) 2018
Yang (10.1016/j.measurement.2025.117741_b28) 2021; 193
Ren (10.1016/j.measurement.2025.117741_b21) 2023; 154
Gotti (10.1016/j.measurement.2025.117741_b1) 2021; 36
Sevlian (10.1016/j.measurement.2025.117741_b8) 2015
Ashok (10.1016/j.measurement.2025.117741_b19) 2018; 9
Guo (10.1016/j.measurement.2025.117741_b42) 2020; 410
Chen (10.1016/j.measurement.2025.117741_b35) 2023; 8
Cavraro (10.1016/j.measurement.2025.117741_b5) 2018; 33
10.1016/j.measurement.2025.117741_b40
Farajollahi (10.1016/j.measurement.2025.117741_b3) 2020; 11
Raghuvamsi (10.1016/j.measurement.2025.117741_b11) 2023; 154
Yu (10.1016/j.measurement.2025.117741_b23) 2018; 14
Zhao (10.1016/j.measurement.2025.117741_b10) 2021; 125
Duan (10.1016/j.measurement.2025.117741_b9) 2019; 13
10.1016/j.measurement.2025.117741_b45
Ganjkhani (10.1016/j.measurement.2025.117741_b24) 2019; 12
Zhuang (10.1016/j.measurement.2025.117741_b13) 2019; 10
10.1016/j.measurement.2025.117741_b44
Lin (10.1016/j.measurement.2025.117741_b31) 2022; 314
Mukherjee (10.1016/j.measurement.2025.117741_b30) 2022; 31
Zhang (10.1016/j.measurement.2025.117741_b27) 2021; 12
Foroutan (10.1016/j.measurement.2025.117741_b17) 2017; 2
Alam (10.1016/j.measurement.2025.117741_b14) 2022; 196
Yang (10.1016/j.measurement.2025.117741_b15) 2017; 270
Cavraro (10.1016/j.measurement.2025.117741_b7) 2019; 6
Wang (10.1016/j.measurement.2025.117741_b25) 2018; 6
Wang (10.1016/j.measurement.2025.117741_b46) 2020; 7
References_xml – volume: 238
  year: 2024
  ident: b37
  article-title: Detection of false data injection attack in power grid based on spatial-temporal transformer network
  publication-title: Expert Syst. Appl.
– volume: 16
  start-page: 2031
  year: 2020
  end-page: 2043
  ident: b32
  article-title: Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach
  publication-title: IEEE Trans. Ind. Inform.
– volume: 31
  year: 2022
  ident: b30
  article-title: A novel strategy for locational detection of false data injection attack
  publication-title: Sustai. Energy Grids. Net.
– reference: S. Moshtagh, A.I. Sifat, B. Azimian, A. Pal, Time-Synchronized State Estimation Using Graph Neural Networks in Presence of Topology Changes, in: 2023 North American Power Symposium, NAPS, 2023, pp. 1–6.
– volume: 154
  year: 2023
  ident: b11
  article-title: Denoising autoencoder based topology identification in distribution systems with missing measurements
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 33
  start-page: 3500
  year: 2018
  end-page: 3509
  ident: b5
  article-title: Power distribution network topology detection with time-series signature verification method
  publication-title: IEEE Trans. Power Syst.
– volume: 6
  start-page: 980
  year: 2019
  end-page: 992
  ident: b7
  article-title: Inverter probing for power distribution network topology processing
  publication-title: IEEE Trans. Control. Netw. Syst.
– volume: 9
  start-page: 1636
  year: 2018
  end-page: 1646
  ident: b19
  article-title: Online detection of stealthy false data injection attacks in power system state estimation
  publication-title: IEEE Trans. Smart Grid
– volume: 1
  start-page: 370
  year: 2014
  end-page: 379
  ident: b18
  article-title: Detection of faults and attacks including false data injection attack in smart grid using Kalman filter
  publication-title: IEEE Trans. Control. Netw. Syst.
– volume: 97
  year: 2020
  ident: b26
  article-title: Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning
  publication-title: Comput. Secur.
– volume: 314
  year: 2022
  ident: b31
  article-title: Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach
  publication-title: Appl. Energy
– volume: 7
  start-page: 8218
  year: 2020
  end-page: 8227
  ident: b46
  article-title: Locational detection of the false data injection attack in a smart grid: A multilabel classification approach
  publication-title: IEEE Internet Things J.
– volume: 344
  start-page: 73
  year: 2019
  end-page: 81
  ident: b16
  article-title: A novel online detection method of data injection attack against dynamic state estimation in smart grid
  publication-title: Neurocomputing
– volume: 410
  start-page: 387
  year: 2020
  end-page: 393
  ident: b42
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
– volume: 36
  start-page: 5824
  year: 2021
  end-page: 5833
  ident: b1
  article-title: A deep neural network approach for online topology identification in state estimation
  publication-title: IEEE Trans. Power Syst.
– volume: 238
  year: 2025
  ident: b38
  article-title: Spatio-temporal graph attention network-based detection of FDIA from smart meter data at geographically hierarchical levels
  publication-title: Electr. Power Syst. Res.
– volume: 14
  start-page: 3271
  year: 2018
  end-page: 3280
  ident: b23
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans. Ind. Informat.
– year: 2015
  ident: b8
  article-title: Distribution system topology detection using consumer load and line flow measurements
– volume: 154
  year: 2023
  ident: b21
  article-title: Deception attacks on event-triggered distributed consensus estimation for nonlinear systems
  publication-title: Automatica
– volume: 133
  start-page: 338
  year: 2016
  end-page: 346
  ident: b2
  article-title: Simultaneous estimation of state variables and network topology for power system real-time modeling
  publication-title: Electr. Power Syst. Res.
– year: 2018
  ident: b43
  article-title: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling
– volume: 125
  year: 2021
  ident: b10
  article-title: Robust PCA-deep belief network surrogate model for distribution system topology identification with DERs
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 2
  start-page: 161
  year: 2017
  end-page: 171
  ident: b17
  article-title: Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method
  publication-title: IET Cyber Phys. Syst.: Theory Appl.
– reference: A. Pandey, D. Wang, TCNN: Temporal Convolutional Neural Network for Real-time Speech Enhancement in the Time Domain, in: ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 2019, pp. 6875–6879.
– volume: 10
  start-page: 2871
  year: 2019
  end-page: 2881
  ident: b12
  article-title: False data injection attacks against state estimation in power distribution systems
  publication-title: IEEE Trans. Smart Grid
– volume: 5
  start-page: 1287
  year: 2024
  end-page: 1301
  ident: b36
  article-title: Robust graph autoencoder-based detection of false data injection attacks against data poisoning in smart grids
  publication-title: IEEE Trans. Artif. Intell.
– volume: 12
  year: 2019
  ident: b24
  article-title: A novel detection algorithm to identify false data injection attacks on power system state estimation
  publication-title: Energies
– volume: 263
  year: 2023
  ident: b34
  article-title: Graph-based detection for false data injection attacks in power grid
  publication-title: Energy
– volume: 270
  start-page: 145
  year: 2017
  end-page: 151
  ident: b15
  article-title: Event-based distributed state estimation under deception attack
  publication-title: Neurocomputing
– volume: 9
  start-page: 4930
  year: 2018
  end-page: 4941
  ident: b20
  article-title: A fast, decentralized covariance selection-based approach to detect cyber attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
– volume: 10
  start-page: 6000
  year: 2019
  end-page: 6013
  ident: b13
  article-title: False data injection attacks against state estimation in multiphase and unbalanced smart distribution systems
  publication-title: IEEE Trans. Smart Grid
– volume: 11
  start-page: 1159
  year: 2020
  end-page: 1170
  ident: b3
  article-title: Topology identification in distribution systems using line current sensors: An MILP approach
  publication-title: IEEE Trans. Smart Grid
– volume: 12
  start-page: 623
  year: 2021
  end-page: 634
  ident: b27
  article-title: Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach
  publication-title: IEEE Trans. Smart Grid
– volume: vol. 24
  year: 2004
  ident: b39
  publication-title: Power System State Estimation: Theory and Implementation
– volume: 6
  start-page: 48785
  year: 2018
  end-page: 48796
  ident: b25
  article-title: Power system security under false data injection attacks with exploitation and exploration based on reinforcement learning
  publication-title: IEEE Access
– volume: 8
  start-page: 1
  year: 2023
  end-page: 12
  ident: b35
  article-title: Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks
  publication-title: Prot. Control. Mod. Power Syst.
– volume: 196
  year: 2022
  ident: b14
  article-title: A maiden application of jaccard similarity for identification of tripped branch utilizing current synchronized measurement considering false data injection attack
  publication-title: Measurement
– volume: 13
  start-page: 750
  year: 2022
  end-page: 761
  ident: b29
  article-title: Spatio-temporal correlation-based false data injection attack detection using deep convolutional neural network
  publication-title: IEEE Trans. Smart Grid
– volume: 9
  start-page: 5113
  year: 2018
  end-page: 5122
  ident: b6
  article-title: Identifying topology of low voltage distribution networks based on smart meter data
  publication-title: IEEE Trans. Smart Grid
– volume: 8
  start-page: 2505
  year: 2017
  end-page: 2516
  ident: b22
  article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
– volume: 163
  year: 2022
  ident: b41
  article-title: A node2vec-based graph embedding approach for unified assembly process information modeling and workstep execution time prediction
  publication-title: Comput. Ind. Eng.
– volume: 10
  start-page: 1058
  year: 2019
  end-page: 1067
  ident: b4
  article-title: Voltage analytics for power distribution network topology verification
  publication-title: IEEE Trans. Smart Grid
– volume: 13
  year: 2019
  ident: b9
  article-title: Deep learning based power distribution network switch action identification leveraging dynamic features of distributed energy resources
  publication-title: IET Gener. Transm. Distrib.
– volume: 193
  year: 2021
  ident: b28
  article-title: Deep learning for online AC false data injection attack detection in smart grids: An approach using LSTM-autoencoder
  publication-title: J. Net. Comp. Appli.
– volume: 145
  year: 2023
  ident: b33
  article-title: Spatio-temporal data-driven detection of false data injection attacks in power distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
– reference: T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal Loss for Dense Object Detection, in: 2017 IEEE International Conference on Computer Vision, ICCV, 2017, pp. 2999–3007.
– volume: 154
  year: 2023
  ident: 10.1016/j.measurement.2025.117741_b11
  article-title: Denoising autoencoder based topology identification in distribution systems with missing measurements
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2023.109464
– volume: 16
  start-page: 2031
  issue: 3
  year: 2020
  ident: 10.1016/j.measurement.2025.117741_b32
  article-title: Online generative adversary network based measurement recovery in false data injection attacks: A cyber-physical approach
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2921106
– volume: 6
  start-page: 980
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b7
  article-title: Inverter probing for power distribution network topology processing
  publication-title: IEEE Trans. Control. Netw. Syst.
  doi: 10.1109/TCNS.2019.2901714
– volume: 8
  start-page: 1
  issue: 2
  year: 2023
  ident: 10.1016/j.measurement.2025.117741_b35
  article-title: Detection of false data injection attacks on power systems using graph edge-conditioned convolutional networks
  publication-title: Prot. Control. Mod. Power Syst.
– volume: 145
  year: 2023
  ident: 10.1016/j.measurement.2025.117741_b33
  article-title: Spatio-temporal data-driven detection of false data injection attacks in power distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2022.108612
– volume: vol. 24
  year: 2004
  ident: 10.1016/j.measurement.2025.117741_b39
– volume: 125
  year: 2021
  ident: 10.1016/j.measurement.2025.117741_b10
  article-title: Robust PCA-deep belief network surrogate model for distribution system topology identification with DERs
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2020.106441
– volume: 36
  start-page: 5824
  issue: 6
  year: 2021
  ident: 10.1016/j.measurement.2025.117741_b1
  article-title: A deep neural network approach for online topology identification in state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2021.3076671
– volume: 97
  year: 2020
  ident: 10.1016/j.measurement.2025.117741_b26
  article-title: Detecting stealthy false data injection attacks in the smart grid using ensemble-based machine learning
  publication-title: Comput. Secur.
  doi: 10.1016/j.cose.2020.101994
– volume: 2
  start-page: 161
  issue: 4
  year: 2017
  ident: 10.1016/j.measurement.2025.117741_b17
  article-title: Detection of false data injection attacks against state estimation in smart grids based on a mixture Gaussian distribution learning method
  publication-title: IET Cyber Phys. Syst.: Theory Appl.
  doi: 10.1049/iet-cps.2017.0013
– volume: 12
  start-page: 623
  issue: 1
  year: 2021
  ident: 10.1016/j.measurement.2025.117741_b27
  article-title: Detecting false data injection attacks in smart grids: A semi-supervised deep learning approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2020.3010510
– volume: 5
  start-page: 1287
  issue: 3
  year: 2024
  ident: 10.1016/j.measurement.2025.117741_b36
  article-title: Robust graph autoencoder-based detection of false data injection attacks against data poisoning in smart grids
  publication-title: IEEE Trans. Artif. Intell.
  doi: 10.1109/TAI.2023.3286831
– volume: 238
  year: 2025
  ident: 10.1016/j.measurement.2025.117741_b38
  article-title: Spatio-temporal graph attention network-based detection of FDIA from smart meter data at geographically hierarchical levels
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2024.111149
– volume: 270
  start-page: 145
  year: 2017
  ident: 10.1016/j.measurement.2025.117741_b15
  article-title: Event-based distributed state estimation under deception attack
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.109
– volume: 410
  start-page: 387
  year: 2020
  ident: 10.1016/j.measurement.2025.117741_b42
  article-title: Short-term traffic speed forecasting based on graph attention temporal convolutional networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.06.001
– volume: 12
  issue: 11
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b24
  article-title: A novel detection algorithm to identify false data injection attacks on power system state estimation
  publication-title: Energies
  doi: 10.3390/en12112209
– volume: 8
  start-page: 2505
  issue: 5
  year: 2017
  ident: 10.1016/j.measurement.2025.117741_b22
  article-title: Real-time detection of false data injection attacks in smart grid: A deep learning-based intelligent mechanism
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2703842
– volume: 154
  year: 2023
  ident: 10.1016/j.measurement.2025.117741_b21
  article-title: Deception attacks on event-triggered distributed consensus estimation for nonlinear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2023.111100
– volume: 13
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b9
  article-title: Deep learning based power distribution network switch action identification leveraging dynamic features of distributed energy resources
  publication-title: IET Gener. Transm. Distrib.
  doi: 10.1049/iet-gtd.2018.6195
– volume: 14
  start-page: 3271
  issue: 7
  year: 2018
  ident: 10.1016/j.measurement.2025.117741_b23
  article-title: Online false data injection attack detection with wavelet transform and deep neural networks
  publication-title: IEEE Trans. Ind. Informat.
  doi: 10.1109/TII.2018.2825243
– volume: 263
  year: 2023
  ident: 10.1016/j.measurement.2025.117741_b34
  article-title: Graph-based detection for false data injection attacks in power grid
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125865
– year: 2015
  ident: 10.1016/j.measurement.2025.117741_b8
– volume: 1
  start-page: 370
  issue: 4
  year: 2014
  ident: 10.1016/j.measurement.2025.117741_b18
  article-title: Detection of faults and attacks including false data injection attack in smart grid using Kalman filter
  publication-title: IEEE Trans. Control. Netw. Syst.
  doi: 10.1109/TCNS.2014.2357531
– volume: 10
  start-page: 6000
  issue: 6
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b13
  article-title: False data injection attacks against state estimation in multiphase and unbalanced smart distribution systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2895306
– volume: 133
  start-page: 338
  year: 2016
  ident: 10.1016/j.measurement.2025.117741_b2
  article-title: Simultaneous estimation of state variables and network topology for power system real-time modeling
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.12.029
– volume: 9
  start-page: 1636
  issue: 3
  year: 2018
  ident: 10.1016/j.measurement.2025.117741_b19
  article-title: Online detection of stealthy false data injection attacks in power system state estimation
  publication-title: IEEE Trans. Smart Grid
– volume: 193
  year: 2021
  ident: 10.1016/j.measurement.2025.117741_b28
  article-title: Deep learning for online AC false data injection attack detection in smart grids: An approach using LSTM-autoencoder
  publication-title: J. Net. Comp. Appli.
– volume: 163
  year: 2022
  ident: 10.1016/j.measurement.2025.117741_b41
  article-title: A node2vec-based graph embedding approach for unified assembly process information modeling and workstep execution time prediction
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107864
– volume: 31
  year: 2022
  ident: 10.1016/j.measurement.2025.117741_b30
  article-title: A novel strategy for locational detection of false data injection attack
  publication-title: Sustai. Energy Grids. Net.
– volume: 9
  start-page: 4930
  issue: 5
  year: 2018
  ident: 10.1016/j.measurement.2025.117741_b20
  article-title: A fast, decentralized covariance selection-based approach to detect cyber attacks in smart grids
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2675960
– ident: 10.1016/j.measurement.2025.117741_b40
  doi: 10.1109/NAPS58826.2023.10318579
– ident: 10.1016/j.measurement.2025.117741_b45
  doi: 10.1109/ICCV.2017.324
– volume: 238
  year: 2024
  ident: 10.1016/j.measurement.2025.117741_b37
  article-title: Detection of false data injection attack in power grid based on spatial-temporal transformer network
  publication-title: Expert Syst. Appl.
– volume: 10
  start-page: 1058
  issue: 1
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b4
  article-title: Voltage analytics for power distribution network topology verification
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2758600
– volume: 344
  start-page: 73
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b16
  article-title: A novel online detection method of data injection attack against dynamic state estimation in smart grid
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.094
– volume: 10
  start-page: 2871
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2025.117741_b12
  article-title: False data injection attacks against state estimation in power distribution systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2018.2813280
– volume: 314
  year: 2022
  ident: 10.1016/j.measurement.2025.117741_b31
  article-title: Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.118828
– year: 2018
  ident: 10.1016/j.measurement.2025.117741_b43
– ident: 10.1016/j.measurement.2025.117741_b44
  doi: 10.1109/ICASSP.2019.8683634
– volume: 11
  start-page: 1159
  issue: 2
  year: 2020
  ident: 10.1016/j.measurement.2025.117741_b3
  article-title: Topology identification in distribution systems using line current sensors: An MILP approach
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2019.2933006
– volume: 33
  start-page: 3500
  issue: 4
  year: 2018
  ident: 10.1016/j.measurement.2025.117741_b5
  article-title: Power distribution network topology detection with time-series signature verification method
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2017.2779129
– volume: 9
  start-page: 5113
  issue: 5
  year: 2018
  ident: 10.1016/j.measurement.2025.117741_b6
  article-title: Identifying topology of low voltage distribution networks based on smart meter data
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2017.2680542
– volume: 196
  year: 2022
  ident: 10.1016/j.measurement.2025.117741_b14
  article-title: A maiden application of jaccard similarity for identification of tripped branch utilizing current synchronized measurement considering false data injection attack
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111259
– volume: 13
  start-page: 750
  issue: 1
  year: 2022
  ident: 10.1016/j.measurement.2025.117741_b29
  article-title: Spatio-temporal correlation-based false data injection attack detection using deep convolutional neural network
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2021.3109628
– volume: 7
  start-page: 8218
  issue: 9
  year: 2020
  ident: 10.1016/j.measurement.2025.117741_b46
  article-title: Locational detection of the false data injection attack in a smart grid: A multilabel classification approach
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2020.2983911
– volume: 6
  start-page: 48785
  year: 2018
  ident: 10.1016/j.measurement.2025.117741_b25
  article-title: Power system security under false data injection attacks with exploitation and exploration based on reinforcement learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2856520
SSID ssj0006396
Score 2.4135535
Snippet In general, the solution of distribution system state estimation (DSSE) is highly dependent on the accuracy of measurement data and accurate topology data....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 117741
SubjectTerms Denoising autoencoder
Distribution system state estimation
False data injection attacks
Graph-based temporal convolutional network
Line current sensors
Topology identification
Title Topology and FDIA identification in distribution system state estimation using a data-driven approach
URI https://dx.doi.org/10.1016/j.measurement.2025.117741
Volume 253
WOSCitedRecordID wos001612756600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006396
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9RAFB3WrRb7IFotrVUZwbeQJTvJJBPwZdEWK1hEV1ifwnwk7pY2LdkP-hv81d75SDJFxYr4EpawM9mdezK5c3LuGYReRYqluYI7rRJjGial5KGAtVBYjVmVKSklSYTZbCI7PWWzWf5xMPje1sJszrO6ZtfX-dV_DTWcg2Dr0tm_CHfXKZyAzxB0OELY4Xi7wNttD6yv0vHbk0mwUE4SxFtlo9J2uW6nK2fmHJjSokCbbthqxmBtaAQeaBFpqBo9LXYW5H5O-6GnGQ3B4JlR9NLMlnP0v2yqDbXzpy8G-MS_zdcbfrE0MoOvI49qlfO1IWu1VIirjseelvBIbVZzq0tYNA7vjsogtNNqOX6trbHpBU1LYw0bhzrR8OdsYh2Gf5r_LRVxNrro_8xIX8m8m3Zd3LTX_qz7191DLqjt8-gdtEUymrMh2pqcHM3ed891yOVSy9jZ37ONXvZqwd9c8NfZjpfBTB-iB27pgScWMo_QoKx30Y5nSLmL7hlBsFw-RmULIwwwwhpG-CaM8KLGPoywhRE2MMI9jLCBEebYgxFuYfQEfTk-mr55F7otOUIZk3gVkiSGCb6EvJUL7WocKyplFWdyXGZCJVWVRkxkOeVjIlIuRc4k4ymJpOCJ0i-999CwvqzLfYQzKSA1jShjKUs4zbmiEeExE7BgobBqOUCsHbpCOr96vW3KedEKE88Kb9QLPeqFHfUDRLqmV9a05TaNXrfxKVz2abPKAsD15-ZP_635Ibrf3xHP0HDVrMvn6K7crBbL5oWD4g9qaLcl
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Topology+and+FDIA+identification+in+distribution+system+state+estimation+using+a+data-driven+approach&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Raghuvamsi%2C+Y.&rft.au=Batchu%2C+Sreenadh&rft.au=Teeparthi%2C+Kiran&rft.date=2025-09-01&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.volume=253&rft_id=info:doi/10.1016%2Fj.measurement.2025.117741&rft.externalDocID=S0263224125011005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon