Time domain turbo equalization based on vector approximate message passing for multiple-input multiple-output underwater acoustic communications

This paper proposes a high-performance receiver for underwater acoustic communications based on time reversal processing for multiple-input multiple-output (MIMO) systems. The receiver employs the vector approximate message passing (VAMP) algorithm as a soft equalizer in turbo equalization. By perfo...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of the Acoustical Society of America Ročník 155; číslo 2; s. 854
Hlavní autori: Li, Wei-Zhe, Han, Xiao, Zhu, Guang-Jun, Yin, Jing-Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 01.02.2024
ISSN:1520-8524, 1520-8524
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:This paper proposes a high-performance receiver for underwater acoustic communications based on time reversal processing for multiple-input multiple-output (MIMO) systems. The receiver employs the vector approximate message passing (VAMP) algorithm as a soft equalizer in turbo equalization. By performing self-iteration between the inner soft slicer and the inner soft equalizer, the VAMP algorithm achieves near-optimal performance. Furthermore, an iterative channel-estimation-based soft successive interference cancellation method is incorporated to suppress co-channel interference in the MIMO system. Additionally, the introduction of passive time reversal technology can combine multiple channels into a single channel, which greatly reduces the computational complexity of the MIMO system, especially for large MIMO systems. The effectiveness of the proposed receiver is verified using experimental data collected in Songhua Lake, China in 2019. The results demonstrate that the proposed receiver significantly reduces the complexity of the traditional parallel-VAMP receiver without sacrificing performance and outperforms other receivers of the same type. Moreover, our experimental results also verify that the VAMP-turbo outperforms the generalized approximate message passing (GAMP)-turbo in terms of bit error rate and convergence performance.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1520-8524
1520-8524
DOI:10.1121/10.0024608