A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning

Digital assets have come under various network security threats in the digital age. As a kind of security equipment to protect digital assets, intrusion detection system (IDS) is less efficient if the alert is not timely and IDS is useless if the accuracy cannot meet the requirements. Therefore, an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access Jg. 9; S. 75729 - 75740
Hauptverfasser: Liu, Chao, Gu, Zhaojun, Wang, Jialiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Piscataway IEEE 2021
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2169-3536, 2169-3536
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Digital assets have come under various network security threats in the digital age. As a kind of security equipment to protect digital assets, intrusion detection system (IDS) is less efficient if the alert is not timely and IDS is useless if the accuracy cannot meet the requirements. Therefore, an intrusion detection model that combines machine learning with deep learning is proposed in this paper. The model uses the k-means and the random forest (RF) algorithms for the binary classification, and distributed computing of these algorithms is implemented on the Spark platform to quickly classify normal events and attack events. Then, by using the convolutional neural network (CNN), long short-term memory (LSTM), and other deep learning algorithms, the events judged as abnormal are further classified into different attack types finally. At this stage, adaptive synthetic sampling (ADASYN) is adopted to solve the unbalanced dataset. The NSL-KDD and CIS-IDS2017 datasets are used to evaluate the performance of the proposed model. The experimental results show that the proposed model has better TPR for most of attack events, faster data preprocessing speed, and potentially less training time. In particular, the accuracy of multi-target classification can reach as high as 85.24% in the NSL-KDD dataset and 99.91% in the CIC-IDS2017 dataset.
AbstractList Digital assets have come under various network security threats in the digital age. As a kind of security equipment to protect digital assets, intrusion detection system (IDS) is less efficient if the alert is not timely and IDS is useless if the accuracy cannot meet the requirements. Therefore, an intrusion detection model that combines machine learning with deep learning is proposed in this paper. The model uses the k-means and the random forest (RF) algorithms for the binary classification, and distributed computing of these algorithms is implemented on the Spark platform to quickly classify normal events and attack events. Then, by using the convolutional neural network (CNN), long short-term memory (LSTM), and other deep learning algorithms, the events judged as abnormal are further classified into different attack types finally. At this stage, adaptive synthetic sampling (ADASYN) is adopted to solve the unbalanced dataset. The NSL-KDD and CIS-IDS2017 datasets are used to evaluate the performance of the proposed model. The experimental results show that the proposed model has better TPR for most of attack events, faster data preprocessing speed, and potentially less training time. In particular, the accuracy of multi-target classification can reach as high as 85.24% in the NSL-KDD dataset and 99.91% in the CIC-IDS2017 dataset.
Author Liu, Chao
Wang, Jialiang
Gu, Zhaojun
Author_xml – sequence: 1
  givenname: Chao
  orcidid: 0000-0002-3490-0512
  surname: Liu
  fullname: Liu, Chao
  email: liuc@cauc.edu.cn
  organization: College of Safety Science and Engineering, Civil Aviation University of China, Tianjin, China
– sequence: 2
  givenname: Zhaojun
  surname: Gu
  fullname: Gu, Zhaojun
  organization: Information Security Evaluation Center, Civil Aviation University of China, Tianjin, China
– sequence: 3
  givenname: Jialiang
  surname: Wang
  fullname: Wang, Jialiang
  organization: College of Computer Science and Technology, Civil Aviation University of China, Tianjin, China
BookMark eNqFkU1v2zAMho2hA9Z1_QW9CNhxcKoPS5aPWdauQTMUaLbrBFqmCgeOlEnOIf9-cl0UQy_TRSTB5yWl92Nx5oPHorhidMEYba6Xq9XNdrvglLOFoJqzqn5XnHOmmlJIoc7-iT8UlyntaD46l2R9XvxekrtTG_uOrP0Yj6kPnnzDEe04RdtTGnFPvkLCjky5hQHaAcl9-QPBpy_kEXwX9uQ2REwjyUmm8UA2CNH3_ulT8d7BkPDy5b4oft3e_FzdlZuH7-vVclNawUVdWsetpVwICp2w3PLatdBZqyopGmdr2XLdIiqlXIXOAeed1pLWtBENgOzERbGedbsAO3OI_R7iyQTozXMhxCcDceztgEY7lCClajSrK8ec7qzSWitQUFXK0az1edY6xPDnmJ9lduEYfV7fcJnXpVwJlrvE3GVjSCmie53KqJl8MbMvZvLFvPiSqeYNZfsRpr8eI_TDf9irme0R8XVaU4ma81r8Bfbum5k
CODEN IAECCG
CitedBy_id crossref_primary_10_32604_cmc_2024_053542
crossref_primary_10_1057_s41599_025_04636_y
crossref_primary_10_3390_computers14070283
crossref_primary_10_1007_s13042_024_02515_7
crossref_primary_10_1038_s41598_023_42257_0
crossref_primary_10_1109_ACCESS_2025_3553558
crossref_primary_10_1109_ACCESS_2022_3204690
crossref_primary_10_1109_ACCESS_2024_3431534
crossref_primary_10_1007_s42979_025_04336_z
crossref_primary_10_1016_j_iot_2025_101667
crossref_primary_10_3390_app15126546
crossref_primary_10_1016_j_vehcom_2024_100726
crossref_primary_10_1088_1742_6596_2161_1_012043
crossref_primary_10_3390_network5020013
crossref_primary_10_1016_j_knosys_2023_110966
crossref_primary_10_1002_cpe_7332
crossref_primary_10_1016_j_future_2022_02_011
crossref_primary_10_1007_s11277_024_10942_6
crossref_primary_10_1007_s11042_023_17781_w
crossref_primary_10_1007_s10207_023_00663_5
crossref_primary_10_3233_JIFS_241805
crossref_primary_10_1109_JIOT_2025_3531047
crossref_primary_10_48084_etasr_10919
crossref_primary_10_1016_j_comcom_2024_01_018
crossref_primary_10_1007_s42979_023_01865_3
crossref_primary_10_1038_s41598_024_74214_w
crossref_primary_10_3389_fcomp_2024_1387354
crossref_primary_10_1007_s41870_022_01114_5
crossref_primary_10_1109_ACCESS_2022_3221400
crossref_primary_10_1109_TCE_2024_3458810
crossref_primary_10_1007_s10586_024_04458_8
crossref_primary_10_1007_s42979_022_01566_3
crossref_primary_10_1016_j_cose_2025_104659
crossref_primary_10_1038_s41598_024_80021_0
crossref_primary_10_3390_app12168162
crossref_primary_10_1109_TVT_2022_3186834
crossref_primary_10_32604_cmc_2024_053721
crossref_primary_10_1109_JSEN_2023_3267682
crossref_primary_10_3390_app14166967
crossref_primary_10_5194_esurf_12_801_2024
crossref_primary_10_1109_ACCESS_2021_3118573
crossref_primary_10_1016_j_jnca_2024_103954
crossref_primary_10_1016_j_measen_2022_100612
crossref_primary_10_32604_cmc_2023_043752
crossref_primary_10_1007_s13042_022_01758_6
crossref_primary_10_1007_s41870_022_01003_x
crossref_primary_10_1016_j_cose_2022_102908
crossref_primary_10_1109_TNSM_2023_3258901
crossref_primary_10_1109_ACCESS_2024_3405628
crossref_primary_10_3390_bioengineering9070283
crossref_primary_10_3390_app13116610
crossref_primary_10_1002_spy2_337
crossref_primary_10_3390_app122010456
crossref_primary_10_1371_journal_pone_0306747
crossref_primary_10_1140_epjp_s13360_024_05320_x
crossref_primary_10_1002_cpe_8088
crossref_primary_10_1016_j_asoc_2023_111163
crossref_primary_10_1109_ACCESS_2024_3378727
crossref_primary_10_1109_ACCESS_2023_3349287
crossref_primary_10_1088_1742_6596_2517_1_012016
crossref_primary_10_1109_ACCESS_2022_3171660
crossref_primary_10_1016_j_cose_2024_103928
crossref_primary_10_1109_ACCESS_2024_3496823
Cites_doi 10.1007/s10844-015-0388-x
10.1109/LCN.2018.8638232
10.1007/978-3-642-20505-7_26
10.1109/TETC.2016.2633228
10.1109/MC.2018.2888764
10.1016/j.procs.2020.04.085
10.4018/IJDCF.2019070104
10.1093/comjnl/bxz064
10.1016/j.procs.2018.05.169
10.1016/j.comnet.2020.107417
10.3390/sym10100485
10.1186/s12859-018-2087-4
10.1016/j.future.2021.03.024
10.1109/ICASID.2019.8925239
10.1109/COMST.2015.2494502
10.4108/sesa.2.3.e5
10.1109/ACCESS.2018.2868993
10.3390/sym11040583
10.1109/ACCESS.2019.2946708
10.1007/s13369-018-3507-5
10.1016/j.jisa.2019.102419
10.1002/nem.2050
10.5120/12499-8312
10.1109/ICCSP.2016.7754517
10.3390/app9020238
10.1109/ACCESS.2019.2895334
10.1016/j.patcog.2017.10.002
10.1109/ACCESS.2017.2754299
10.1007/978-981-13-7564-4_41
10.1007/s10207-020-00508-5
10.1016/j.procs.2017.06.037
10.1109/ICACCI.2017.8126009
10.1109/ACCESS.2017.2780250
10.1109/ACCESS.2020.3019931
10.1109/SIU.2018.8404689
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
DOA
DOI 10.1109/ACCESS.2021.3082147
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
METADEX
Computer and Information Systems Abstracts Professional
DatabaseTitleList

Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2169-3536
EndPage 75740
ExternalDocumentID oai_doaj_org_article_8fe5a55698174f1f8dc68886a6a446f0
10_1109_ACCESS_2021_3082147
9437227
Genre orig-research
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities of Civil Aviation University of China
  grantid: 3122020064
  funderid: 10.13039/501100002881
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
ABAZT
ABVLG
ACGFS
ADBBV
AGSQL
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
IPLJI
JAVBF
KQ8
M43
M~E
O9-
OCL
OK1
RIA
RIE
RNS
AAYXX
CITATION
7SC
7SP
7SR
8BQ
8FD
JG9
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3237-cf2cc02330ad3c2c27fbadcc64539fc75b28bee666f4effa22d885070939aa5d3
IEDL.DBID DOA
ISSN 2169-3536
IngestDate Fri Oct 03 12:47:53 EDT 2025
Sun Nov 30 04:07:58 EST 2025
Tue Nov 18 21:42:24 EST 2025
Sat Nov 29 06:12:17 EST 2025
Wed Aug 27 02:51:12 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3237-cf2cc02330ad3c2c27fbadcc64539fc75b28bee666f4effa22d885070939aa5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3490-0512
OpenAccessLink https://doaj.org/article/8fe5a55698174f1f8dc68886a6a446f0
PQID 2532302631
PQPubID 4845423
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_8fe5a55698174f1f8dc68886a6a446f0
crossref_primary_10_1109_ACCESS_2021_3082147
ieee_primary_9437227
crossref_citationtrail_10_1109_ACCESS_2021_3082147
proquest_journals_2532302631
PublicationCentury 2000
PublicationDate 20210000
2021-00-00
20210101
2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE access
PublicationTitleAbbrev Access
PublicationYear 2021
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref14
ref31
ref30
policar (ref27) 2019
ref32
ref10
ref2
sagale (ref11) 2014; 1
ref1
ref39
ref17
ref38
ref16
ref19
ref18
chae (ref42) 2014; 8
kunang (ref33) 2021; 58
sharafaldin (ref26) 2019
dhanabal (ref23) 2015; 4
ref24
ref25
ref20
ref41
ref22
ref21
ref28
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
manimurugan (ref36) 2020
ref40
References_xml – ident: ref32
  doi: 10.1007/s10844-015-0388-x
– ident: ref16
  doi: 10.1109/LCN.2018.8638232
– ident: ref17
  doi: 10.1007/978-3-642-20505-7_26
– ident: ref29
  doi: 10.1109/TETC.2016.2633228
– volume: 1
  start-page: 56
  year: 2014
  ident: ref11
  article-title: Hybrid model for intrusion detection using naive Bayesian and support vector machine
  publication-title: Int J Comput Technol
– ident: ref25
  doi: 10.1109/MC.2018.2888764
– volume: 58
  start-page: 102804
  year: 2021
  ident: ref33
  article-title: Attack classification of an intrusion detection system using deep learning and hyperparameter optimization
  publication-title: J Inf Secur Appl
– ident: ref31
  doi: 10.1016/j.procs.2020.04.085
– ident: ref28
  doi: 10.4018/IJDCF.2019070104
– ident: ref40
  doi: 10.1093/comjnl/bxz064
– ident: ref7
  doi: 10.1016/j.procs.2018.05.169
– start-page: 108
  year: 2019
  ident: ref26
  article-title: Toward generating a new intrusion detection dataset and intrusion traffic characterization
  publication-title: Proc 4th Int Conf Inf Syst Secur Privacy
– start-page: 1
  year: 2020
  ident: ref36
  article-title: Intrusion detection in cloud environment using hybrid genetic algorithm and back propagation neural network
  publication-title: Int J Commun Syst
– ident: ref19
  doi: 10.1016/j.comnet.2020.107417
– ident: ref21
  doi: 10.3390/sym10100485
– ident: ref2
  doi: 10.1186/s12859-018-2087-4
– ident: ref38
  doi: 10.1016/j.future.2021.03.024
– ident: ref37
  doi: 10.1109/ICASID.2019.8925239
– volume: 8
  start-page: 134
  year: 2014
  ident: ref42
  article-title: Feature selection for efficient intrusion detection using attribute ratio
  publication-title: Int J Comput Commun
– ident: ref1
  doi: 10.1109/COMST.2015.2494502
– ident: ref13
  doi: 10.4108/sesa.2.3.e5
– ident: ref8
  doi: 10.1109/ACCESS.2018.2868993
– ident: ref22
  doi: 10.3390/sym11040583
– ident: ref35
  doi: 10.1109/ACCESS.2019.2946708
– ident: ref12
  doi: 10.1007/s13369-018-3507-5
– ident: ref24
  doi: 10.1016/j.jisa.2019.102419
– ident: ref41
  doi: 10.1002/nem.2050
– ident: ref10
  doi: 10.5120/12499-8312
– ident: ref20
  doi: 10.1109/ICCSP.2016.7754517
– ident: ref30
  doi: 10.3390/app9020238
– ident: ref34
  doi: 10.1109/ACCESS.2019.2895334
– ident: ref3
  doi: 10.1016/j.patcog.2017.10.002
– ident: ref4
  doi: 10.1109/ACCESS.2017.2754299
– ident: ref6
  doi: 10.1007/978-981-13-7564-4_41
– ident: ref18
  doi: 10.1007/s10207-020-00508-5
– ident: ref5
  doi: 10.1016/j.procs.2017.06.037
– volume: 4
  start-page: 446
  year: 2015
  ident: ref23
  article-title: A study on NSL-KDD dataset for intrusion detection system based on classification algorithms
  publication-title: Int J Adv Res Comput Commun Eng
– ident: ref14
  doi: 10.1109/ICACCI.2017.8126009
– ident: ref15
  doi: 10.1109/ACCESS.2017.2780250
– year: 2019
  ident: ref27
  article-title: openTSNE: A modular Python library for t-SNE dimensionality reduction and embedding
  publication-title: BioRxiv
– ident: ref39
  doi: 10.1109/ACCESS.2020.3019931
– ident: ref9
  doi: 10.1109/SIU.2018.8404689
SSID ssj0000816957
Score 2.4259484
Snippet Digital assets have come under various network security threats in the digital age. As a kind of security equipment to protect digital assets, intrusion...
SourceID doaj
proquest
crossref
ieee
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 75729
SubjectTerms Accuracy
Adaptive sampling
Algorithms
Artificial neural networks
Classification
Classification algorithms
Computer networks
Datasets
Deep learning
deep learning algorithm
Distributed processing
Feature extraction
Hybrid systems
Intrusion detection
Intrusion detection system
Intrusion detection systems
k-means
Machine learning
machine learning algorithm
Machine learning algorithms
Radio frequency
random forest
Security
Sparks
SummonAdditionalLinks – databaseName: IEEE/IET Electronic Library
  dbid: RIE
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PbxQhFH5pGw96sGo1bn8YDt7stDMwDHDcbm1q1MYYNT1JGHgYE51tuquJ_70Phk6aaEy8DROYAB_M4wPe9wCeu0b2EltetTwQQZF9qPra9ZXRse4C2QeRw_l8eqMuLvTlpXm3AYeTLwwi5stneJQe81l-WPofaavs2KRDJq42YVMpNfpqTfspKYCEkaoICzW1OZ4vFtQGooC8OUqiLE0KoXLL-GSN_hJU5Y8_cTYvZ9v_V7EHcL8sI9l8xP0hbODwCO7dEhfcgc9zdv4r-WOxV0PyrCAA2Cmu89WrgY1K5eyEjFhgKU1YJS8q9rp6i2S-XrD3bgjL7yzF7lytGSWoNF6xIsj65TF8PHv5YXFelWgKlRdcqMpH7j1ZaFG7IDz3XMXeBe-7VgoTvZI91z0i0ZnYYoyO86A1rRZrI4xzMognsDUsB3wKzJu2dcIrI7UjgqVNaGnhgnUUCokw4gz4TTdbX6TGU8SLbzZTjtrYERubsLEFmxkcToWuRqWNf2c_SfhNWZNMdn5BwNgy66yOKJ2UndFEvGITdfAdUf7OdY5ocKxnsJPAnD5ScJzB_s1osGVKryyX1I3EWEWz-_dSe3A3VXDcn9mHLYIWD-CO_7n-urp-lkfrb1rK5cA
  priority: 102
  providerName: IEEE
Title A Hybrid Intrusion Detection System Based on Scalable K-Means+ Random Forest and Deep Learning
URI https://ieeexplore.ieee.org/document/9437227
https://www.proquest.com/docview/2532302631
https://doaj.org/article/8fe5a55698174f1f8dc68886a6a446f0
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2169-3536
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816957
  issn: 2169-3536
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA4iHvQgPnF9LDl407pt0rTJcV13UdRFRGVPhjQPEbSKuwhe_O1O0rgsCHrxUkhJ0mZm2pmvzXyD0L7KWMVsTpKcGAAorDJJlaoqEdylhQH_QEM5n7uLcjjko5G4min15feENfTAjeA63FmmGCsEh9jZZY4bXQBqK1ShAMm4gNYh6pkBU-EdzLNCsDLSDGWp6HR7PVgRAEKSHXmKlswXVJlxRYGxP5ZY-fFeDs5msIKWY5SIu83draI5W6-hpRnuwHV038WnHz7dCp_VPnEC5ItP7CTsrKpxQ0SOj8FHGezboAqfJIXPk0sL3ukAX6vavDxjX5pzPMHQgNH2FUe-1YcNdDvo3_ROk1gsIdGU0DLRjmgNDpimylBNNCldpYzWRc6ocLpkFeGVtYBWXG6dU4QYziEYTAUVSjFDN9F8_VLbLYS1yHNFdSkYV4CfuDA5xCU2dbS0gAdtC5FvuUkdmcR9QYsnGRBFKmQjbOmFLaOwW-hwOui1IdL4vfuxV8i0q2fBDifANmS0DfmXbbTQulfndBLhf1ISmHv3W70yPrFjSRiIEQApzbb_49I7aNEvp_lYs4vmwRDsHlrQ75PH8Vs7GCscLz_77ZBy-AVPzupn
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VggQc-GoRCwV84EbTJv5I7ON2odqq2xVCBfWE5dhjhATZil2Q-PeMEzeqBELiFkd2ZPvZGT_b8wbglatUq1DyQvJABEW1oWhL1xZGx7IOZB9EH87n46JZLvXFhXm3BfujLwwi9pfP8CA99mf5YeV_pK2yQ5MOmXhzA24qKXk1eGuNOyophIRRTZYWqkpzOJ3NqBVEAnl1kGRZqhRE5Zr56VX6c1iVP_7FvYE5vv9_VXsA9_JCkk0H5B_CFnaP4O41ecEd-DRl81_JI4uddMm3giBgb3DTX77q2KBVzo7IjAWW0oRW8qNip8UZkgF7zd67Lqy-sRS9c71hlKDSeMmyJOvnXfhw_PZ8Ni9yPIXCCy6awkfuPdloUbogPPe8ia0L3tdSCRN9o1quW0QiNFFijI7zoDWtF0sjjHMqiMew3a06fALMGymd8I1R2hHF0iZIWrpgGUWDRBlxAvyqm63PYuMp5sVX25OO0tgBG5uwsRmbCeyPhS4HrY1_Zz9K-I1Zk1B2_4KAsXneWR1ROaVqo4l6xSrq4Gsi_bWrHRHhWE5gJ4E5fiTjOIG9q9Fg86ReW66oG4mziurp30u9hNvz87OFXZwsT5_BnVTZYbdmD7YJZnwOt_zPzZf19xf9yP0Nc8DpBw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Intrusion+Detection+System+Based+on+Scalable+K-Means%2B+Random+Forest+and+Deep+Learning&rft.jtitle=IEEE+access&rft.au=Liu%2C+Chao&rft.au=Gu%2C+Zhaojun&rft.au=Wang%2C+Jialiang&rft.date=2021&rft.issn=2169-3536&rft.eissn=2169-3536&rft.volume=9&rft.spage=75729&rft.epage=75740&rft_id=info:doi/10.1109%2FACCESS.2021.3082147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_ACCESS_2021_3082147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2169-3536&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2169-3536&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2169-3536&client=summon