A Novel Discriminant Non-Negative Matrix Factorization Algorithm With Applications to Facial Image Characterization Problems

The methods introduced so far regarding discriminant non-negative matrix factorization (DNMF) do not guarantee convergence to a stationary limit point. In order to remedy this limitation, a novel DNMF method is presented that uses projected gradients. The proposed algorithm employs some extra modifi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information forensics and security Ročník 2; číslo 3; s. 588 - 595
Hlavní autoři: Kotsia, I., Zafeiriou, S., Pitas, I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.09.2007
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:1556-6013, 1556-6021
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The methods introduced so far regarding discriminant non-negative matrix factorization (DNMF) do not guarantee convergence to a stationary limit point. In order to remedy this limitation, a novel DNMF method is presented that uses projected gradients. The proposed algorithm employs some extra modifications that make the method more suitable for classification tasks. The usefulness of the proposed technique to frontal face verification and facial expression recognition problems is demonstrated.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
ISSN:1556-6013
1556-6021
DOI:10.1109/TIFS.2007.902017