Automated Design of Collaboration-Based Hybrid Metaheuristics

Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate optimization problems persists as a formidable task. This article introduces a novel top-down methodology for the automated design of hybrid O...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 54; no. 12; pp. 7877 - 7890
Main Authors: Wang, Yipeng, Xin, Bin, Liu, Bo, Wang, Qing
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2024
Subjects:
ISSN:2168-2267, 2168-2275, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate optimization problems persists as a formidable task. This article introduces a novel top-down methodology for the automated design of hybrid OAs, treating algorithm design as a meta-optimization problem. A general design template for collaboration-based hybrid OAs is developed, integrating a multitude of hybridization strategies for the first time. Besides, a mathematical model is built to formulate the meta-optimization problem of algorithm design. To address the meta-optimization challenge, an improved multifactorial evolutionary algorithm is proposed to automatically design efficient hybrid metaheuristics in a multitasking environment for the given instances with diverse features. To verify the effectiveness of the proposed design methodology, it is applied to the CEC2017 benchmark functions and the binary knapsack problem. Numerical results have demonstrated the feasibility and effectiveness of the proposed methodology for both continuous and combinatorial optimization benchmarks.
AbstractList Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate optimization problems persists as a formidable task. This article introduces a novel top-down methodology for the automated design of hybrid OAs, treating algorithm design as a meta-optimization problem. A general design template for collaboration-based hybrid OAs is developed, integrating a multitude of hybridization strategies for the first time. Besides, a mathematical model is built to formulate the meta-optimization problem of algorithm design. To address the meta-optimization challenge, an improved multifactorial evolutionary algorithm is proposed to automatically design efficient hybrid metaheuristics in a multitasking environment for the given instances with diverse features. To verify the effectiveness of the proposed design methodology, it is applied to the CEC2017 benchmark functions and the binary knapsack problem. Numerical results have demonstrated the feasibility and effectiveness of the proposed methodology for both continuous and combinatorial optimization benchmarks.Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate optimization problems persists as a formidable task. This article introduces a novel top-down methodology for the automated design of hybrid OAs, treating algorithm design as a meta-optimization problem. A general design template for collaboration-based hybrid OAs is developed, integrating a multitude of hybridization strategies for the first time. Besides, a mathematical model is built to formulate the meta-optimization problem of algorithm design. To address the meta-optimization challenge, an improved multifactorial evolutionary algorithm is proposed to automatically design efficient hybrid metaheuristics in a multitasking environment for the given instances with diverse features. To verify the effectiveness of the proposed design methodology, it is applied to the CEC2017 benchmark functions and the binary knapsack problem. Numerical results have demonstrated the feasibility and effectiveness of the proposed methodology for both continuous and combinatorial optimization benchmarks.
Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate optimization problems persists as a formidable task. This article introduces a novel top-down methodology for the automated design of hybrid OAs, treating algorithm design as a meta-optimization problem. A general design template for collaboration-based hybrid OAs is developed, integrating a multitude of hybridization strategies for the first time. Besides, a mathematical model is built to formulate the meta-optimization problem of algorithm design. To address the meta-optimization challenge, an improved multifactorial evolutionary algorithm is proposed to automatically design efficient hybrid metaheuristics in a multitasking environment for the given instances with diverse features. To verify the effectiveness of the proposed design methodology, it is applied to the CEC2017 benchmark functions and the binary knapsack problem. Numerical results have demonstrated the feasibility and effectiveness of the proposed methodology for both continuous and combinatorial optimization benchmarks.
Author Xin, Bin
Wang, Yipeng
Liu, Bo
Wang, Qing
Author_xml – sequence: 1
  givenname: Yipeng
  orcidid: 0000-0003-2092-8888
  surname: Wang
  fullname: Wang, Yipeng
  organization: School of Automation, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Bin
  orcidid: 0000-0001-9989-0418
  surname: Xin
  fullname: Xin, Bin
  email: brucebin@bit.edu.cn
  organization: School of Automation, the National Key Laboratory of Autonomous Intelligent Unmanned Systems, and the Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
– sequence: 3
  givenname: Bo
  orcidid: 0000-0002-6615-6601
  surname: Liu
  fullname: Liu, Bo
  organization: Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
– sequence: 4
  givenname: Qing
  orcidid: 0000-0002-4021-3372
  surname: Wang
  fullname: Wang, Qing
  organization: School of Automation, the National Key Laboratory of Autonomous Intelligent Unmanned Systems, and the Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology, Beijing, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38959152$$D View this record in MEDLINE/PubMed
BookMark eNp9kD1PAzEMhiMEgvLxA5AQ6shyJR-Xy3lgoOVTKmKBgSnKXXwQ1F5Kkhv677nSghADXmzZz2vZ7z7Zbn2LhBwzOmKMwvnT5GU84pTnI5EzDqC2yICzosw4V3L7py7UHjmK8Z32UfYtKHfJnihBApN8QC4uu-TnJqEdXmF0r-3QN8OJn81M5YNJzrfZ2MR-eresgrPDB0zmDbvgYnJ1PCQ7jZlFPNrkA_J8c_00ucumj7f3k8tpVgvOU9bYwtBGcs6BMchrWtgyR6hqhFwYKKECWedgG96AKIwyIFnVKKGsQWEtEwfkbL13EfxHhzHpuYs19le26LuoBVVSUapE2aOnG7Sr5mj1Iri5CUv9_XIPqDVQBx9jwEbXLn19moJxM82oXvmrV_7qlb9642-vZH-U38v_05ysNQ4Rf_GyzDlI8Qme6IS6
CODEN ITCEB8
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111596
crossref_primary_10_1109_TCYB_2025_3561518
Cites_doi 10.1109/TCYB.2020.2984546
10.1162/evco_a_00242
10.1016/j.ejor.2019.01.018
10.1109/TCYB.2021.3080044
10.1016/j.cie.2023.109080
10.1016/j.asoc.2011.02.032
10.1007/978-3-030-94216-8_4
10.1007/s11432-020-3092-y
10.1109/TEVC.2022.3197298
10.1007/s11227-023-05852-6
10.1038/s41586-023-06924-6
10.1109/MCI.2020.2976182
10.1057/jors.2013.71
10.34133/icomputing.0048
10.1109/CEC.2013.6557555
10.1109/CEC.2017.7969456
10.1016/j.ejor.2006.06.046
10.1109/TAI.2020.3022339
10.1016/j.cie.2021.107843
10.23919/CSMS.2023.0008
10.1109/TEVC.2015.2458037
10.1109/CEC.2017.7969336
10.1162/evco.2008.16.1.31
10.1109/tevc.2023.3349250
10.1109/TEVC.2010.2059031
10.1016/j.eswa.2019.04.027
10.1109/TCYB.2022.3225341
10.1109/TCYB.2022.3232113
10.1109/TEVC.2021.3051608
10.1109/TSMCC.2011.2160941
10.1016/j.cor.2021.105692
10.1142/S230138502450002X
10.1109/TIE.2021.3114700
10.1109/tcyb.2024.3384443
10.1109/CEC.2014.6900380
10.1049/PBCE119F_ch3
10.1002/9780470496916
10.23919/CSMS.2023.0006
10.1093/comjnl/5.4.349
10.1109/TCYB.2021.3087363
10.1109/TCYB.2021.3062799
10.1109/TSMC.2017.2784187
10.1016/0022-0000(91)90023-X
10.1007/978-3-642-29139-5_18
10.1109/TEVC.2019.2921598
10.1109/TCYB.2018.2881227
10.1142/S230138502441005X
10.1007/978-3-319-13826-8_4
10.1016/j.ejor.2024.04.004
10.1109/TCYB.2021.3120875
10.1109/CEC.2017.7969524
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3412997
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 7890
ExternalDocumentID 38959152
10_1109_TCYB_2024_3412997
10584295
Genre orig-research
Journal Article
GrantInformation_xml – fundername: Shanghai Municipal Science and Technology Major Project
  grantid: 2021SHZDZX0100
– fundername: Shanghai Municipal Commission of Science and Technology Project
  grantid: 19511132101
– fundername: Beijing Advanced Innovation Center for Intelligent Robots and Systems
– fundername: National Outstanding Youth Talents Support Program
  grantid: 61822304
– fundername: Basic Science Center Programs of NSFC
  grantid: 62088101
  funderid: 10.13039/501100001809
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-fd6a0f522291194c06d84e9bce943a989b95c49df2f936a7a951bf737dae3dd13
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001263370100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Sep 28 09:34:19 EDT 2025
Wed Mar 05 02:44:37 EST 2025
Sat Nov 29 02:02:41 EST 2025
Tue Nov 18 21:14:32 EST 2025
Wed Aug 27 03:05:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-fd6a0f522291194c06d84e9bce943a989b95c49df2f936a7a951bf737dae3dd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9989-0418
0000-0002-6615-6601
0000-0003-2092-8888
0000-0002-4021-3372
PMID 38959152
PQID 3075700738
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_38959152
proquest_miscellaneous_3075700738
ieee_primary_10584295
crossref_citationtrail_10_1109_TCYB_2024_3412997
crossref_primary_10_1109_TCYB_2024_3412997
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Liu (ref21) 2024
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref49
ref8
ref7
Awad (ref43) 2016
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Zhao (ref25) 2024
ref24
ref23
ref26
ref20
ref22
Zhao (ref27) 2022
ref28
ref29
References_xml – ident: ref54
  doi: 10.1109/TCYB.2020.2984546
– ident: ref19
  doi: 10.1162/evco_a_00242
– ident: ref33
  doi: 10.1016/j.ejor.2019.01.018
– volume-title: Problem Definitions and Evaluation Criteria for the CEC 2017 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
  year: 2016
  ident: ref43
– ident: ref30
  doi: 10.1109/TCYB.2021.3080044
– ident: ref44
  doi: 10.1016/j.cie.2023.109080
– ident: ref12
  doi: 10.1016/j.asoc.2011.02.032
– ident: ref34
  doi: 10.1007/978-3-030-94216-8_4
– ident: ref2
  doi: 10.1007/s11432-020-3092-y
– ident: ref17
  doi: 10.1109/TEVC.2022.3197298
– ident: ref35
  doi: 10.1007/s11227-023-05852-6
– ident: ref22
  doi: 10.1038/s41586-023-06924-6
– ident: ref23
  doi: 10.1109/MCI.2020.2976182
– ident: ref31
  doi: 10.1057/jors.2013.71
– ident: ref20
  doi: 10.34133/icomputing.0048
– ident: ref48
  doi: 10.1109/CEC.2013.6557555
– ident: ref52
  doi: 10.1109/CEC.2017.7969456
– ident: ref46
  doi: 10.1016/j.ejor.2006.06.046
– year: 2022
  ident: ref27
  article-title: AutoOpt: A methodological framework of automatically designing metaheuristics for optimization problems
  publication-title: arXiv:2204.00998
– ident: ref7
  doi: 10.1109/TAI.2020.3022339
– ident: ref24
  doi: 10.1016/j.cie.2021.107843
– ident: ref3
  doi: 10.23919/CSMS.2023.0008
– ident: ref39
  doi: 10.1109/TEVC.2015.2458037
– ident: ref53
  doi: 10.1109/CEC.2017.7969336
– ident: ref28
  doi: 10.1162/evco.2008.16.1.31
– ident: ref40
  doi: 10.1109/tevc.2023.3349250
– ident: ref47
  doi: 10.1109/TEVC.2010.2059031
– ident: ref32
  doi: 10.1016/j.eswa.2019.04.027
– ident: ref1
  doi: 10.1109/TCYB.2022.3225341
– ident: ref8
  doi: 10.1109/TCYB.2022.3232113
– ident: ref41
  doi: 10.1109/TEVC.2021.3051608
– ident: ref36
  doi: 10.1109/TSMCC.2011.2160941
– ident: ref50
  doi: 10.1016/j.cor.2021.105692
– ident: ref4
  doi: 10.1142/S230138502450002X
– ident: ref14
  doi: 10.1109/TIE.2021.3114700
– ident: ref5
  doi: 10.1109/tcyb.2024.3384443
– ident: ref49
  doi: 10.1109/CEC.2014.6900380
– ident: ref38
  doi: 10.1049/PBCE119F_ch3
– ident: ref45
  doi: 10.1002/9780470496916
– ident: ref16
  doi: 10.23919/CSMS.2023.0006
– ident: ref37
  doi: 10.1093/comjnl/5.4.349
– ident: ref42
  doi: 10.1109/TCYB.2021.3087363
– ident: ref29
  doi: 10.1109/TCYB.2021.3062799
– ident: ref55
  doi: 10.1109/TSMC.2017.2784187
– ident: ref11
  doi: 10.1016/0022-0000(91)90023-X
– ident: ref26
  doi: 10.1007/978-3-642-29139-5_18
– ident: ref18
  doi: 10.1109/TEVC.2019.2921598
– ident: ref6
  doi: 10.1109/TCYB.2018.2881227
– ident: ref10
  doi: 10.1142/S230138502441005X
– ident: ref13
  doi: 10.1007/978-3-319-13826-8_4
– ident: ref9
  doi: 10.1016/j.ejor.2024.04.004
– ident: ref15
  doi: 10.1109/TCYB.2021.3120875
– year: 2024
  ident: ref25
  article-title: Automated design of metaheuristic algorithms: A survey
  publication-title: arXiv:2303.06532
– ident: ref51
  doi: 10.1109/CEC.2017.7969524
– year: 2024
  ident: ref21
  article-title: Evolution of heuristics: Towards efficient automatic algorithm design using large language model
  publication-title: arXiv:2401.02051
SSID ssj0000816898
Score 2.398649
Snippet Hybridization plays a prominent role in bolstering the performance of optimization algorithms (OAs), yet designing efficient hybrid OAs tailored to intricate...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7877
SubjectTerms Automated algorithm design (AAD)
Automation
Benchmark testing
Design methodology
hybrid metaheuristics (MHs)
Mathematical models
meta-optimization
Metaheuristics
multifactorial optimization
Multitasking
Taxonomy
Title Automated Design of Collaboration-Based Hybrid Metaheuristics
URI https://ieeexplore.ieee.org/document/10584295
https://www.ncbi.nlm.nih.gov/pubmed/38959152
https://www.proquest.com/docview/3075700738
Volume 54
WOSCitedRecordID wos001263370100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4sCFRwt0y0OpxKFUMjhxEmcOHGAp4lBQD1TaniLHD1Gp2lRsgtR_z9jxruAAEjcf7DzmPbZnPoAjIY1qlDZMOaEZ5RuaoWoESyvuuEHFcxdQS37I29tqMsGfsVg91MJYa8PlM3vih-Es37S691tlpOHkLjMslmFZSjkUay02VAKCRMC-zWjAKKyQ8RQz5Xh6N_59Qdlglp-Q2SYT7MH3yFcXmBbZC5cUMFZeDzeD27naeOcHb8J6jC-T80EgtmDJTj_AVtTgWfI1tpk-_ghn533XUrxqTXIZrnEkrUvGz8WCXZCLM8n1f1_VldzYTt3bPnZ23oZfV9_vxtcsgikwTTrbMWdKxV3h4bvTFHPNS1PlFhttMRcKK2yw0DkalzkUpZKKQq_GSc9LK4xJxQ6sTNup_QQJRWll6bQwurE5yhRdkQv6S1rIMyPkCPicnrWOncY94MXfOmQcHGvPjdpzo47cGMG3xZJ_Q5uNtyZve1I_mzhQeQRf5lyrSUn8yYea2raf1WTIfB9_KaoR7A7sXKyeS8HnV566B2v-5cMVln1Y6R56ewCr-rH7M3s4JEmcVIdBEp8ATErWBg
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLZKiwQXaKHAlrYMEgdASslMMg8femi3VIvYrjgsUjmNMnmoldAO6s4g8e_rZLKrcigStxziUSa2YzuO_QG8E6VRjdKGKSc0o3hDM1SNYGnFHTeouHQBtWRazmbV5SV-i8XqoRbGWhsen9kjPwy5fNPq3l-VkYaTucwwfwBbuZRZOpRrra9UAoZEQL_NaMDIsShjHjPl-Gk-_nFK8WAmj-jgpkPYw--Rtc4xzbO_jFJAWbnf4QyG5_zpfy55G55EDzM5GURiBzbs4hnsRB1eJu9jo-kPz-H4pO9a8litSc7CQ46kdcn4rmCwUzJyJpn88XVdyYXt1JXtY2_nXfh-_nk-nrAIp8A0aW3HnCkUd7kH8E5TlJoXppIWG21RCoUVNphricZlDkWhSkXOV-NKz00rjEnFC9hctAv7ChLy04rCaWF0YyWWKbpcCvpLIuSZEeUI-Go_ax17jXvIi591iDk41p4btedGHbkxgo9rkl9Do41_Td71W31n4rDLI3i74lpNauJzH2ph235Z01HmO_mXohrBy4Gda-qVFOzd89U38Ggyv5jW0y-zr6_hsV_I8KBlHza7m94ewEP9u7te3hwGebwFj6nYZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Design+of+Collaboration-Based+Hybrid+Metaheuristics&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Wang%2C+Yipeng&rft.au=Xin%2C+Bin&rft.au=Liu%2C+Bo&rft.au=Wang%2C+Qing&rft.date=2024-12-01&rft.issn=2168-2275&rft.eissn=2168-2275&rft.volume=54&rft.issue=12&rft.spage=7877&rft_id=info:doi/10.1109%2FTCYB.2024.3412997&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon