Automatic algorithm selection for Pseudo-Boolean optimization with given computational time limits

Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers. They have been applied to various problems including Boolean Satisfiability, Traveling Salesperson and Graph Coloring. These techniques are used to implement meta-solvers that rec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computers & operations research Jg. 173; S. 106836
Hauptverfasser: Pezo, Catalina, Hochbaum, Dorit, Godoy, Julio, Asín-Achá, Roberto
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.01.2025
Schlagworte:
ISSN:0305-0548
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers. They have been applied to various problems including Boolean Satisfiability, Traveling Salesperson and Graph Coloring. These techniques are used to implement meta-solvers that receive, as input, the instance of a problem, predict the best-performing solver in the portfolio, and execute it to deliver a solution. Typically, the quality of the solution improves with a longer computational time. This has led to the development of anytime meta-solvers, which consider both the instance and a user-prescribed computational time limit. Anytime meta-solvers predict the best-performing solver within the specified time limit. In this study, we focus on designing anytime meta-solvers for the NP-hard optimization problem of Pseudo-Boolean Optimization (PBO), which generalizes Satisfiability and Maximum Satisfiability problems. The effectiveness of our approach is demonstrated via extensive empirical study in which our anytime meta-solver, named PBO_MS, improves dramatically on the performance of Mixed Integer Programming solver Gurobi, which is the best-performing single solver in the portfolio. We generalize the anytime meta-solver by predicting a given number p≥1 of best solvers in the portfolio and then run these, each with equal share of the specified time limit. This anytime p-meta-solver is shown here to outperform both the anytime 1-meta-solver as well as a fixed selection of p solvers by a wide margin. •First research on Algorithm Selection and Anytime Algorithm Selection for Pseudo Boolean Optimization (PBO).•Inclusion of a “no solution” special label to predict when a solution is not expected for a given time limit.•Inclusion of the mˆms for anytime scenarios.•Identification of new informative features for algorithm selection on PBO.•Implementation and comparison of dynamic portfolios for anytime PBO.
AbstractList Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers. They have been applied to various problems including Boolean Satisfiability, Traveling Salesperson and Graph Coloring. These techniques are used to implement meta-solvers that receive, as input, the instance of a problem, predict the best-performing solver in the portfolio, and execute it to deliver a solution. Typically, the quality of the solution improves with a longer computational time. This has led to the development of anytime meta-solvers, which consider both the instance and a user-prescribed computational time limit. Anytime meta-solvers predict the best-performing solver within the specified time limit. In this study, we focus on designing anytime meta-solvers for the NP-hard optimization problem of Pseudo-Boolean Optimization (PBO), which generalizes Satisfiability and Maximum Satisfiability problems. The effectiveness of our approach is demonstrated via extensive empirical study in which our anytime meta-solver, named PBO_MS, improves dramatically on the performance of Mixed Integer Programming solver Gurobi, which is the best-performing single solver in the portfolio. We generalize the anytime meta-solver by predicting a given number p≥1 of best solvers in the portfolio and then run these, each with equal share of the specified time limit. This anytime p-meta-solver is shown here to outperform both the anytime 1-meta-solver as well as a fixed selection of p solvers by a wide margin. •First research on Algorithm Selection and Anytime Algorithm Selection for Pseudo Boolean Optimization (PBO).•Inclusion of a “no solution” special label to predict when a solution is not expected for a given time limit.•Inclusion of the mˆms for anytime scenarios.•Identification of new informative features for algorithm selection on PBO.•Implementation and comparison of dynamic portfolios for anytime PBO.
ArticleNumber 106836
Author Godoy, Julio
Hochbaum, Dorit
Pezo, Catalina
Asín-Achá, Roberto
Author_xml – sequence: 1
  givenname: Catalina
  orcidid: 0000-0001-6828-1812
  surname: Pezo
  fullname: Pezo, Catalina
  email: cpezov@berkeley.edu
  organization: Department of Industrial Engineering and Operations Research, University of California, Berkeley, USA
– sequence: 2
  givenname: Dorit
  orcidid: 0000-0002-2498-0512
  surname: Hochbaum
  fullname: Hochbaum, Dorit
  email: dhochbaum@berkeley.edu
  organization: Department of Industrial Engineering and Operations Research, University of California, Berkeley, USA
– sequence: 3
  givenname: Julio
  orcidid: 0000-0002-4912-1837
  surname: Godoy
  fullname: Godoy, Julio
  email: jugodoy@inf.udec.cl
  organization: Department of Computer Science, Universidad de Concepción, Chile
– sequence: 4
  givenname: Roberto
  surname: Asín-Achá
  fullname: Asín-Achá, Roberto
  email: roberto.asin@usm.cl
  organization: Department of Informatics, Universidad Técnica Federico Santa María, Chile
BookMark eNp9kMtOAyEUhlnUxLb6AO54ganA3Ji4qo23pIkudE0YOFSamaEBWqNPL-24clE2J3D-7-TwzdBkcAMgdEPJghJa3W4XyvkFI6xI94rn1QRNSU7KjJQFv0SzELYknZrRKWqX--h6Ga3Csts4b-NnjwN0oKJ1AzbO47cAe-2ye-c6kAN2u2h7-yNP_a-Uxxt7gAEr1-_28fQsO5wygLsUjOEKXRjZBbj-q3P08fjwvnrO1q9PL6vlOlM5YzEzsjVcF1RSxjnRXBPKW2ha1moGZVVTSVjJTMMKrjmhkpHCcEp1YzhTqmnzOarHucq7EDwYoey4T_TSdoIScdQjtiLpEUc9YtSTSPqP3HnbS_99lrkbGUhfOljwIigLgwJtfZIntLNn6F-kGoQP
CitedBy_id crossref_primary_10_3390_su17094176
Cites_doi 10.1007/BF00116251
10.1016/S0004-3702(00)00081-3
10.1007/978-3-030-22475-2_1
10.1016/j.eswa.2020.113613
10.1016/j.cor.2021.105661
10.1016/j.artint.2016.04.003
10.1016/j.eswa.2021.115948
10.1016/S0065-2458(08)60520-3
10.1613/jair.1.13818
10.1016/j.cor.2021.105615
10.1007/s10479-012-1081-x
10.1007/BF00058655
10.1145/3065386
10.1613/jair.1.12228
10.1017/S1471068414000015
10.1017/S1471068413000094
10.1126/science.275.5296.51
10.1145/1858996.1859087
10.1587/transinf.2014FOP0007
10.1109/CVPR.2015.7298594
10.1023/A:1010933404324
10.1016/j.artint.2015.12.006
10.1016/S0166-218X(01)00341-9
10.1162/evco_a_00242
10.1016/j.cor.2013.11.015
10.1016/j.cor.2020.105184
10.1613/jair.2490
10.1016/j.artint.2018.10.004
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.cor.2024.106836
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
ExternalDocumentID 10_1016_j_cor_2024_106836
S0305054824003083
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABDPE
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEFWE
AEHXG
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSH
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
ADGUI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c322t-fabf8d41a12880d8d018be9b2bd2e5671a0252f9248d801a204f811d9f82cc9b3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001313522100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Sat Nov 29 03:23:47 EST 2025
Tue Nov 18 21:49:54 EST 2025
Sun Apr 06 06:53:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Algorithm selection
PBO
Combinatorial optimization
ML
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-fabf8d41a12880d8d018be9b2bd2e5671a0252f9248d801a204f811d9f82cc9b3
ORCID 0000-0001-6828-1812
0000-0002-4912-1837
0000-0002-2498-0512
ParticipantIDs crossref_citationtrail_10_1016_j_cor_2024_106836
crossref_primary_10_1016_j_cor_2024_106836
elsevier_sciencedirect_doi_10_1016_j_cor_2024_106836
PublicationCentury 2000
PublicationDate January 2025
2025-01-00
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: January 2025
PublicationDecade 2020
PublicationTitle Computers & operations research
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pulina, Tacchella (b45) 2007
Gomes, Selman (b23) 2001; 126
Smith-Miles, Christiansen, Muñoz (b51) 2021; 128
Kadioglu, Malitsky, Sellmann, Tierney (b30) 2010
Achá, López, Hagedorn, Baier (b1) 2022; 75
Martins, Manquinho, Lynce (b42) 2014
Gebser, Kaminski, Kaufmann, Schaub, Schneider, Ziller (b21) 2011
Biere, Heule, van Maaren (b8) 2009
Zhu, Goldberg (b59) 2009; 3
Quinlan (b46) 1986; 1
Krizhevsky, Sutskever, Hinton (b33) 2017; 60
Loreggia, Malitsky, Samulowitz, Saraswat (b36) 2016
Wolsey, Nemhauser (b57) 1999
Bischl, Kerschke, Kotthoff, Lindauer, Malitsky, Fréchette, Hoos, Hutter, Leyton-Brown, Tierney, Vanschoren (b10) 2016
Kerschke, Hoos, Neumann, Trautmann (b31) 2019; 27
Breiman (b14) 2017
Asín Achá, Nieuwenhuis (b7) 2014; 218
Amadini, Stuckey (b4) 2014
Guo, Zhen, Li, Luo, Yuan, Jin, Yan (b24) 2023
Boros, Hammer (b11) 2002; 123
Alloghani, Al-Jumeily, Mustafina, Hussain, Aljaaf (b2) 2020
Burkart, Huber (b15) 2021; 70
Ansótegui, Bonet, Gabas, Levy (b5) 2012
Breiman (b13) 2001; 45
Fix, Hodges (b19) 1991
Friedman (b20) 2001
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9.
Breiman (b12) 1996; 24
Nudelman, Leyton-Brown, Devkar, Shoham, Hoos (b43) 2004; 2004
Wille, Zhang, Drechsler (b56) 2011
Gurobi Optimization, LLC (b25) 2023
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b44) 2011; 12
De Souza, Ritt, López-Ibáñez (b17) 2022; 139
Strassl, Musliu (b53) 2022; 141
Martins, Joshi, Manquinho, Lynce (b41) 2014
Huerta, Neira, Ortega, Varas, Godoy, Asín-Achá (b28) 2020; 158
Ansótegui, Gabas, Malitsky, Sellmann (b6) 2016; 235
Manquinho, Marques-Silva (b38) 2005
Lei, Cai, Luo, Hoos (b34) 2021
Hoos, Kaminski, Lindauer, Schaub (b26) 2015; 15
Trezentos, P., Lynce, I., Oliveira, A.L., 2010. Apt-pbo: solving the software dependency problem using pseudo-boolean optimization. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering. pp. 427–436.
Alpaydin (b3) 2021
Maratea, Pulina, Ricca (b40) 2014; 14
Biere, Heule, van Maaren, Walsh (b9) 2009
Smith-Miles, Baatar, Wreford, Lewis (b50) 2014; 45
Sakai, Nabeshima (b48) 2015; 98
Huerta, Neira, Ortega, Varas, Godoy, Asín-Achá (b29) 2022; 187
Manquinho, Roussel, Deters (b39) 2011
Huberman, Lukose, Hogg (b27) 1997; 275
Simonyan, Zisserman (b49) 2014
Xu, Hutter, Hoos, Leyton-Brown (b58) 2008; 32
Covarrubias (b16) 2016
Koshimura, Zhang, Fujita, Hasegawa (b32) 2012; 8
Malitsky, Sabharwal, Samulowitz, Sellmann (b37) 2012
Gebser, Kaufmann, Neumann, Schaub (b22) 2007
Sörensson (b52) 2010; 2010
Rice (b47) 1976; vol. 15
Lindauer, van Rijn, Kotthoff (b35) 2019; 272
Elffers, Nordström (b18) 2018; 18
Asín Achá (10.1016/j.cor.2024.106836_b7) 2014; 218
Amadini (10.1016/j.cor.2024.106836_b4) 2014
Biere (10.1016/j.cor.2024.106836_b9) 2009
Maratea (10.1016/j.cor.2024.106836_b40) 2014; 14
Nudelman (10.1016/j.cor.2024.106836_b43) 2004; 2004
Bischl (10.1016/j.cor.2024.106836_b10) 2016
Wille (10.1016/j.cor.2024.106836_b56) 2011
Gebser (10.1016/j.cor.2024.106836_b21) 2011
Breiman (10.1016/j.cor.2024.106836_b14) 2017
Huerta (10.1016/j.cor.2024.106836_b29) 2022; 187
Strassl (10.1016/j.cor.2024.106836_b53) 2022; 141
Zhu (10.1016/j.cor.2024.106836_b59) 2009; 3
Breiman (10.1016/j.cor.2024.106836_b12) 1996; 24
Friedman (10.1016/j.cor.2024.106836_b20) 2001
Kerschke (10.1016/j.cor.2024.106836_b31) 2019; 27
Pedregosa (10.1016/j.cor.2024.106836_b44) 2011; 12
Lei (10.1016/j.cor.2024.106836_b34) 2021
Guo (10.1016/j.cor.2024.106836_b24) 2023
Malitsky (10.1016/j.cor.2024.106836_b37) 2012
Smith-Miles (10.1016/j.cor.2024.106836_b51) 2021; 128
Kadioglu (10.1016/j.cor.2024.106836_b30) 2010
Wolsey (10.1016/j.cor.2024.106836_b57) 1999
Krizhevsky (10.1016/j.cor.2024.106836_b33) 2017; 60
Koshimura (10.1016/j.cor.2024.106836_b32) 2012; 8
Simonyan (10.1016/j.cor.2024.106836_b49) 2014
10.1016/j.cor.2024.106836_b54
10.1016/j.cor.2024.106836_b55
Ansótegui (10.1016/j.cor.2024.106836_b6) 2016; 235
Gurobi Optimization, LLC (10.1016/j.cor.2024.106836_b25) 2023
Martins (10.1016/j.cor.2024.106836_b41) 2014
Alpaydin (10.1016/j.cor.2024.106836_b3) 2021
Xu (10.1016/j.cor.2024.106836_b58) 2008; 32
Quinlan (10.1016/j.cor.2024.106836_b46) 1986; 1
Ansótegui (10.1016/j.cor.2024.106836_b5) 2012
Manquinho (10.1016/j.cor.2024.106836_b39) 2011
Breiman (10.1016/j.cor.2024.106836_b13) 2001; 45
Burkart (10.1016/j.cor.2024.106836_b15) 2021; 70
Manquinho (10.1016/j.cor.2024.106836_b38) 2005
Loreggia (10.1016/j.cor.2024.106836_b36) 2016
Biere (10.1016/j.cor.2024.106836_b8) 2009
Hoos (10.1016/j.cor.2024.106836_b26) 2015; 15
Huberman (10.1016/j.cor.2024.106836_b27) 1997; 275
Fix (10.1016/j.cor.2024.106836_b19) 1991
Pulina (10.1016/j.cor.2024.106836_b45) 2007
Boros (10.1016/j.cor.2024.106836_b11) 2002; 123
Covarrubias (10.1016/j.cor.2024.106836_b16) 2016
Sakai (10.1016/j.cor.2024.106836_b48) 2015; 98
Rice (10.1016/j.cor.2024.106836_b47) 1976; vol. 15
Sörensson (10.1016/j.cor.2024.106836_b52) 2010; 2010
Lindauer (10.1016/j.cor.2024.106836_b35) 2019; 272
Martins (10.1016/j.cor.2024.106836_b42) 2014
Achá (10.1016/j.cor.2024.106836_b1) 2022; 75
Huerta (10.1016/j.cor.2024.106836_b28) 2020; 158
Alloghani (10.1016/j.cor.2024.106836_b2) 2020
Gebser (10.1016/j.cor.2024.106836_b22) 2007
Gomes (10.1016/j.cor.2024.106836_b23) 2001; 126
De Souza (10.1016/j.cor.2024.106836_b17) 2022; 139
Elffers (10.1016/j.cor.2024.106836_b18) 2018; 18
Smith-Miles (10.1016/j.cor.2024.106836_b50) 2014; 45
References_xml – start-page: 332
  year: 2021
  end-page: 348
  ident: b34
  article-title: Efficient local search for pseudo boolean optimization
  publication-title: Theory and Applications of Satisfiability Testing–SAT 2021: 24th International Conference, Barcelona, Spain, July 5-9, 2021, Proceedings 24
– start-page: 531
  year: 2014
  end-page: 548
  ident: b41
  article-title: Incremental cardinality constraints for maxsat
  publication-title: International Conference on Principles and Practice of Constraint Programming
– start-page: 260
  year: 2007
  end-page: 265
  ident: b22
  article-title: Clasp: A conflict-driven answer set solver
  publication-title: International Conference on Logic Programming and Nonmonotonic Reasoning
– volume: 60
  start-page: 84
  year: 2017
  end-page: 90
  ident: b33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
– start-page: 32
  year: 1991
  end-page: 39
  ident: b19
  article-title: Discriminatory analysis: nonparametric discrimination: consistency properties
  publication-title: Nearest Neighbor (NN) Norms NN Pattern Classif. Tech
– start-page: 352
  year: 2011
  end-page: 357
  ident: b21
  article-title: A portfolio solver for answer set programming: Preliminary report
  publication-title: Logic Programming and Nonmonotonic Reasoning: 11th International Conference, LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings 11
– start-page: 41
  year: 2016
  end-page: 58
  ident: b10
  article-title: ASlib: A Benchmark Library for Algorithm Selection
  publication-title: Artificial Intelligence J. (AIJ)
– volume: 187
  year: 2022
  ident: b29
  article-title: Improving the state-of-the-art in the traveling salesman problem: An anytime automatic algorithm selection
  publication-title: Expert Syst. Appl.
– volume: 235
  start-page: 26
  year: 2016
  end-page: 39
  ident: b6
  article-title: Maxsat by improved instance-specific algorithm configuration
  publication-title: Artificial Intelligence
– start-page: 120
  year: 2011
  end-page: 125
  ident: b56
  article-title: ATPG for reversible circuits using simulation, boolean satisfiability, and pseudo boolean optimization
  publication-title: 2011 IEEE Computer Society Annual Symposium on VLSI
– volume: 2010
  year: 2010
  ident: b52
  article-title: Minisat 2.2 and minisat++ 1.1
  publication-title: A Short Descr. SAT Race
– year: 2009
  ident: b8
  article-title: Handbook of satisfiability
– volume: 98
  start-page: 1121
  year: 2015
  end-page: 1127
  ident: b48
  article-title: Construction of an ROBDD for a PB-constraint in band form and related techniques for PB-solvers
  publication-title: IEICE Trans. Inf. Syst.
– start-page: 131
  year: 2009
  end-page: 153
  ident: b9
  article-title: Conflict-driven clause learning sat solvers
  publication-title: Handb. Satisf. Front. Artif. Intell. Appl.
– volume: 2004
  year: 2004
  ident: b43
  article-title: Satzilla: An algorithm portfolio for SAT
  publication-title: Solv. Descr. SAT compet.
– year: 2023
  ident: b25
  article-title: Gurobi optimizer reference manual
– volume: 218
  start-page: 71
  year: 2014
  end-page: 91
  ident: b7
  article-title: Curriculum-based course timetabling with SAT and maxsat
  publication-title: Ann. Oper. Res.
– volume: 275
  start-page: 51
  year: 1997
  end-page: 54
  ident: b27
  article-title: An economics approach to hard computational problems
  publication-title: Science
– volume: 15
  start-page: 117
  year: 2015
  end-page: 142
  ident: b26
  article-title: Aspeed: Solver scheduling via answer set programming1
  publication-title: Theory Pract. Log. Program.
– volume: 139
  year: 2022
  ident: b17
  article-title: Capping methods for the automatic configuration of optimization algorithms
  publication-title: Comput. Oper. Res.
– year: 2011
  ident: b39
  article-title: Pseudo-boolean competition 2010
– volume: 70
  start-page: 245
  year: 2021
  end-page: 317
  ident: b15
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J. Artificial Intelligence Res.
– volume: 18
  start-page: 1291
  year: 2018
  end-page: 1299
  ident: b18
  article-title: Divide and conquer: Towards faster pseudo-boolean solving.
  publication-title: IJCAI
– volume: 126
  start-page: 43
  year: 2001
  end-page: 62
  ident: b23
  article-title: Algorithm portfolios
  publication-title: Artificial Intelligence
– start-page: 1189
  year: 2001
  end-page: 1232
  ident: b20
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
– volume: 45
  start-page: 12
  year: 2014
  end-page: 24
  ident: b50
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Comput. Oper. Res.
– start-page: 660
  year: 2005
  end-page: 665
  ident: b38
  article-title: Effective lower bounding techniques for pseudo-boolean optimization [eda applications]
  publication-title: Design, Automation and Test in Europe
– volume: 32
  start-page: 565
  year: 2008
  end-page: 606
  ident: b58
  article-title: Satzilla: portfolio-based algorithm selection for SAT
  publication-title: J. Artificial Intelligence Res.
– year: 2021
  ident: b3
  article-title: Machine learning
– volume: 8
  start-page: 95
  year: 2012
  end-page: 100
  ident: b32
  article-title: Qmaxsat: A partial max-SAT solver
  publication-title: J. Satisf. Boolean Model. Comput.
– start-page: 512
  year: 2012
  end-page: 526
  ident: b37
  article-title: Parallel SAT solver selection and scheduling
  publication-title: Principles and Practice of Constraint Programming: 18th International Conference, CP 2012, QuÉBec City, QC, Canada, October 8-12, 2012. Proceedings
– volume: 75
  start-page: 323
  year: 2022
  end-page: 350
  ident: b1
  article-title: Multi-agent path finding: A new boolean encoding
  publication-title: J. Artificial Intelligence Res.
– year: 2016
  ident: b16
  article-title: Portfolio approaches for problem solving
– start-page: 1
  year: 2023
  end-page: 16
  ident: b24
  article-title: Machine learning methods in solving the boolean satisfiability problem
  publication-title: Mach. Intell. Res.
– reference: Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A., 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. pp. 1–9.
– volume: 123
  start-page: 155
  year: 2002
  end-page: 225
  ident: b11
  article-title: Pseudo-boolean optimization
  publication-title: Discrete Appl. Math.
– volume: 272
  start-page: 86
  year: 2019
  end-page: 100
  ident: b35
  article-title: The algorithm selection competitions 2015 and 2017
  publication-title: Artificial Intelligence
– start-page: 438
  year: 2014
  end-page: 445
  ident: b42
  article-title: Open-WBO: A modular maxsat solver
  publication-title: International Conference on Theory and Applications of Satisfiability Testing
– reference: Trezentos, P., Lynce, I., Oliveira, A.L., 2010. Apt-pbo: solving the software dependency problem using pseudo-boolean optimization. In: Proceedings of the IEEE/ACM International Conference on Automated Software Engineering. pp. 427–436.
– start-page: 751
  year: 2010
  end-page: 756
  ident: b30
  article-title: ISAC–instance-specific algorithm configuration
  publication-title: ECAI 2010
– start-page: 86
  year: 2012
  end-page: 101
  ident: b5
  article-title: Improving SAT-based weighted maxsat solvers
  publication-title: International Conference on Principles and Practice of Constraint Programming
– year: 2016
  ident: b36
  article-title: Deep learning for algorithm portfolios
  publication-title: Thirtieth AAAI Conference on Artificial Intelligence
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b44
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– volume: 14
  start-page: 841
  year: 2014
  end-page: 868
  ident: b40
  article-title: A multi-engine approach to answer-set programming
  publication-title: Theory Pract. Log. Program.
– start-page: 108
  year: 2014
  end-page: 124
  ident: b4
  article-title: Sequential time splitting and bounds communication for a portfolio of optimization solvers
  publication-title: Principles and Practice of Constraint Programming: 20th International Conference, CP 2014, Lyon, France, September 8-12, 2014. Proceedings 20
– volume: 141
  year: 2022
  ident: b53
  article-title: Instance space analysis and algorithm selection for the job shop scheduling problem
  publication-title: Comput. Oper. Res.
– start-page: 574
  year: 2007
  end-page: 589
  ident: b45
  article-title: A multi-engine solver for quantified boolean formulas
  publication-title: Principles and Practice of Constraint Programming–CP 2007: 13th International Conference, CP 2007, Providence, RI, USA, September 23-27, 2007. Proceedings 13
– volume: 158
  year: 2020
  ident: b28
  article-title: Anytime automatic algorithm selection for knapsack
  publication-title: Expert Syst. Appl.
– year: 2014
  ident: b49
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 1999
  ident: b57
  article-title: Integer and combinatorial optimization
– volume: vol. 15
  start-page: 65
  year: 1976
  end-page: 118
  ident: b47
  article-title: The algorithm selection problem
  publication-title: Advances in Computers
– start-page: 3
  year: 2020
  end-page: 21
  ident: b2
  article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science
  publication-title: Superv. Unsupervised Learn. Data Sci.
– volume: 128
  year: 2021
  ident: b51
  article-title: Revisiting where are the hard knapsack problems? via instance space analysis
  publication-title: Comput. Oper. Res.
– volume: 27
  start-page: 3
  year: 2019
  end-page: 45
  ident: b31
  article-title: Automated algorithm selection: Survey and perspectives
  publication-title: Evol. Comput.
– volume: 24
  start-page: 123
  year: 1996
  end-page: 140
  ident: b12
  article-title: Bagging predictors
  publication-title: Mach. Learn.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b13
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2017
  ident: b14
  article-title: Classification and regression trees
– volume: 1
  start-page: 81
  year: 1986
  end-page: 106
  ident: b46
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
– volume: 3
  start-page: 1
  year: 2009
  end-page: 130
  ident: b59
  article-title: Introduction to semi-supervised learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 10.1016/j.cor.2024.106836_b46
  article-title: Induction of decision trees
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116251
– year: 2016
  ident: 10.1016/j.cor.2024.106836_b36
  article-title: Deep learning for algorithm portfolios
– year: 2017
  ident: 10.1016/j.cor.2024.106836_b14
– volume: 126
  start-page: 43
  issue: 1–2
  year: 2001
  ident: 10.1016/j.cor.2024.106836_b23
  article-title: Algorithm portfolios
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(00)00081-3
– volume: 2010
  year: 2010
  ident: 10.1016/j.cor.2024.106836_b52
  article-title: Minisat 2.2 and minisat++ 1.1
  publication-title: A Short Descr. SAT Race
– start-page: 3
  year: 2020
  ident: 10.1016/j.cor.2024.106836_b2
  article-title: A systematic review on supervised and unsupervised machine learning algorithms for data science
  publication-title: Superv. Unsupervised Learn. Data Sci.
  doi: 10.1007/978-3-030-22475-2_1
– volume: 158
  year: 2020
  ident: 10.1016/j.cor.2024.106836_b28
  article-title: Anytime automatic algorithm selection for knapsack
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113613
– start-page: 120
  year: 2011
  ident: 10.1016/j.cor.2024.106836_b56
  article-title: ATPG for reversible circuits using simulation, boolean satisfiability, and pseudo boolean optimization
– year: 1999
  ident: 10.1016/j.cor.2024.106836_b57
– start-page: 660
  year: 2005
  ident: 10.1016/j.cor.2024.106836_b38
  article-title: Effective lower bounding techniques for pseudo-boolean optimization [eda applications]
– year: 2023
  ident: 10.1016/j.cor.2024.106836_b25
– start-page: 438
  year: 2014
  ident: 10.1016/j.cor.2024.106836_b42
  article-title: Open-WBO: A modular maxsat solver
– volume: 141
  year: 2022
  ident: 10.1016/j.cor.2024.106836_b53
  article-title: Instance space analysis and algorithm selection for the job shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105661
– start-page: 41
  issue: 237
  year: 2016
  ident: 10.1016/j.cor.2024.106836_b10
  article-title: ASlib: A Benchmark Library for Algorithm Selection
  publication-title: Artificial Intelligence J. (AIJ)
  doi: 10.1016/j.artint.2016.04.003
– volume: 187
  year: 2022
  ident: 10.1016/j.cor.2024.106836_b29
  article-title: Improving the state-of-the-art in the traveling salesman problem: An anytime automatic algorithm selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115948
– volume: vol. 15
  start-page: 65
  year: 1976
  ident: 10.1016/j.cor.2024.106836_b47
  article-title: The algorithm selection problem
  doi: 10.1016/S0065-2458(08)60520-3
– start-page: 531
  year: 2014
  ident: 10.1016/j.cor.2024.106836_b41
  article-title: Incremental cardinality constraints for maxsat
– volume: 75
  start-page: 323
  year: 2022
  ident: 10.1016/j.cor.2024.106836_b1
  article-title: Multi-agent path finding: A new boolean encoding
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.13818
– volume: 139
  year: 2022
  ident: 10.1016/j.cor.2024.106836_b17
  article-title: Capping methods for the automatic configuration of optimization algorithms
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2021.105615
– volume: 3
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2024.106836_b59
  article-title: Introduction to semi-supervised learning
  publication-title: Synth. Lect. Artif. Intell. Mach. Learn.
– volume: 218
  start-page: 71
  issue: 1
  year: 2014
  ident: 10.1016/j.cor.2024.106836_b7
  article-title: Curriculum-based course timetabling with SAT and maxsat
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-012-1081-x
– volume: 24
  start-page: 123
  issue: 2
  year: 1996
  ident: 10.1016/j.cor.2024.106836_b12
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 60
  start-page: 84
  issue: 6
  year: 2017
  ident: 10.1016/j.cor.2024.106836_b33
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
– start-page: 32
  year: 1991
  ident: 10.1016/j.cor.2024.106836_b19
  article-title: Discriminatory analysis: nonparametric discrimination: consistency properties
  publication-title: Nearest Neighbor (NN) Norms NN Pattern Classif. Tech
– start-page: 86
  year: 2012
  ident: 10.1016/j.cor.2024.106836_b5
  article-title: Improving SAT-based weighted maxsat solvers
– volume: 70
  start-page: 245
  year: 2021
  ident: 10.1016/j.cor.2024.106836_b15
  article-title: A survey on the explainability of supervised machine learning
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.1.12228
– volume: 18
  start-page: 1291
  year: 2018
  ident: 10.1016/j.cor.2024.106836_b18
  article-title: Divide and conquer: Towards faster pseudo-boolean solving.
– start-page: 332
  year: 2021
  ident: 10.1016/j.cor.2024.106836_b34
  article-title: Efficient local search for pseudo boolean optimization
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.cor.2024.106836_b44
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– start-page: 751
  year: 2010
  ident: 10.1016/j.cor.2024.106836_b30
  article-title: ISAC–instance-specific algorithm configuration
– volume: 15
  start-page: 117
  issue: 1
  year: 2015
  ident: 10.1016/j.cor.2024.106836_b26
  article-title: Aspeed: Solver scheduling via answer set programming1
  publication-title: Theory Pract. Log. Program.
  doi: 10.1017/S1471068414000015
– start-page: 1189
  year: 2001
  ident: 10.1016/j.cor.2024.106836_b20
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: Ann. Statist.
– start-page: 260
  year: 2007
  ident: 10.1016/j.cor.2024.106836_b22
  article-title: Clasp: A conflict-driven answer set solver
– volume: 14
  start-page: 841
  issue: 6
  year: 2014
  ident: 10.1016/j.cor.2024.106836_b40
  article-title: A multi-engine approach to answer-set programming
  publication-title: Theory Pract. Log. Program.
  doi: 10.1017/S1471068413000094
– volume: 8
  start-page: 95
  issue: 1–2
  year: 2012
  ident: 10.1016/j.cor.2024.106836_b32
  article-title: Qmaxsat: A partial max-SAT solver
  publication-title: J. Satisf. Boolean Model. Comput.
– volume: 275
  start-page: 51
  issue: 5296
  year: 1997
  ident: 10.1016/j.cor.2024.106836_b27
  article-title: An economics approach to hard computational problems
  publication-title: Science
  doi: 10.1126/science.275.5296.51
– ident: 10.1016/j.cor.2024.106836_b55
  doi: 10.1145/1858996.1859087
– volume: 98
  start-page: 1121
  issue: 6
  year: 2015
  ident: 10.1016/j.cor.2024.106836_b48
  article-title: Construction of an ROBDD for a PB-constraint in band form and related techniques for PB-solvers
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.2014FOP0007
– start-page: 108
  year: 2014
  ident: 10.1016/j.cor.2024.106836_b4
  article-title: Sequential time splitting and bounds communication for a portfolio of optimization solvers
– start-page: 1
  year: 2023
  ident: 10.1016/j.cor.2024.106836_b24
  article-title: Machine learning methods in solving the boolean satisfiability problem
  publication-title: Mach. Intell. Res.
– ident: 10.1016/j.cor.2024.106836_b54
  doi: 10.1109/CVPR.2015.7298594
– year: 2014
  ident: 10.1016/j.cor.2024.106836_b49
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.cor.2024.106836_b13
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 2004
  year: 2004
  ident: 10.1016/j.cor.2024.106836_b43
  article-title: Satzilla: An algorithm portfolio for SAT
  publication-title: Solv. Descr. SAT compet.
– year: 2016
  ident: 10.1016/j.cor.2024.106836_b16
– start-page: 512
  year: 2012
  ident: 10.1016/j.cor.2024.106836_b37
  article-title: Parallel SAT solver selection and scheduling
– volume: 235
  start-page: 26
  year: 2016
  ident: 10.1016/j.cor.2024.106836_b6
  article-title: Maxsat by improved instance-specific algorithm configuration
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2015.12.006
– volume: 123
  start-page: 155
  issue: 1–3
  year: 2002
  ident: 10.1016/j.cor.2024.106836_b11
  article-title: Pseudo-boolean optimization
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(01)00341-9
– start-page: 131
  year: 2009
  ident: 10.1016/j.cor.2024.106836_b9
  article-title: Conflict-driven clause learning sat solvers
  publication-title: Handb. Satisf. Front. Artif. Intell. Appl.
– volume: 27
  start-page: 3
  issue: 1
  year: 2019
  ident: 10.1016/j.cor.2024.106836_b31
  article-title: Automated algorithm selection: Survey and perspectives
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00242
– start-page: 352
  year: 2011
  ident: 10.1016/j.cor.2024.106836_b21
  article-title: A portfolio solver for answer set programming: Preliminary report
– year: 2011
  ident: 10.1016/j.cor.2024.106836_b39
– year: 2009
  ident: 10.1016/j.cor.2024.106836_b8
– start-page: 574
  year: 2007
  ident: 10.1016/j.cor.2024.106836_b45
  article-title: A multi-engine solver for quantified boolean formulas
– volume: 45
  start-page: 12
  year: 2014
  ident: 10.1016/j.cor.2024.106836_b50
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.015
– year: 2021
  ident: 10.1016/j.cor.2024.106836_b3
– volume: 128
  year: 2021
  ident: 10.1016/j.cor.2024.106836_b51
  article-title: Revisiting where are the hard knapsack problems? via instance space analysis
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105184
– volume: 32
  start-page: 565
  year: 2008
  ident: 10.1016/j.cor.2024.106836_b58
  article-title: Satzilla: portfolio-based algorithm selection for SAT
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.2490
– volume: 272
  start-page: 86
  year: 2019
  ident: 10.1016/j.cor.2024.106836_b35
  article-title: The algorithm selection competitions 2015 and 2017
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.10.004
SSID ssj0000721
Score 2.452805
Snippet Machine learning (ML) techniques have been proposed to automatically select the best solver from a portfolio of solvers. They have been applied to various...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106836
SubjectTerms Algorithm selection
Combinatorial optimization
PBO
Title Automatic algorithm selection for Pseudo-Boolean optimization with given computational time limits
URI https://dx.doi.org/10.1016/j.cor.2024.106836
Volume 173
WOSCitedRecordID wos001313522100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000721
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWFiE48FhALS_5wIkqUuIktX1caBEgVFWiSHuLEjvpUqXxapOtWvjzjF9JujwESFyiKFp7I3-fxuPJNzMIvYwA2YpQGcBuXQa6BHrA04IEXJCCUBHHVJqS-R_p0RGbz_nxZPLN58Jc1LRp2OUlX_5XqOEZgK1TZ_8C7n5SeAD3ADpcAXa4_hHws3WnXB3W-lTB2X9xvteabjdeVXjclmupgtdK1ToOr8BqnLt0TBuXPdUm0KjN150PFuom9Hu1Todqxw6t7wrRGg6pZbly2jpXRWgx2N6vyqUc5rXr2W11u2JR5Lbb8oF-3V4RBAfmK5_CrXpitubT_kETzMTC3EaDQFyNYxgk3Yhh9Mk1g5LJJHRpXWFqC3H2xto2PvnB8NsYxBngpou8kgSe7LN4o8i22bY_6Xn1tFo9G4MHegNtE5pysOrbs_eH8w_DRk5N2l7_Hv6juJEHbvzRz92akatych_ddWcMPLPceIAmZTNFt3yKwxTd86BhZ9mn6M6oLuVDVPQcwj2HcM8hDBzC1zmExxzCmkPYcAhf4xDWHMKWQ4_Q57eHJ2_eBa4ZRyDA5ndBlRcVk0mUg0PDQslkGLGi5AUpJCnTfRrlgCup4DjPJHg9OQmTikWR5BUjQvAifoy2GtWUOwjzpAplmDIKznwiKGekjKtIaN80jioS7qLQr2UmXKV63TClzrwk8SyD5c_08md2-XfRq37I0pZp-d2PEw9Q5vxM6z9mwKZfD3vyb8OeotsD5Z-hrW61Lp-jm-Ki-9KuXjjOfQd9q6KI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automatic+algorithm+selection+for+Pseudo-Boolean+optimization+with+given+computational+time+limits&rft.jtitle=Computers+%26+operations+research&rft.au=Pezo%2C+Catalina&rft.au=Hochbaum%2C+Dorit&rft.au=Godoy%2C+Julio&rft.au=As%C3%ADn-Ach%C3%A1%2C+Roberto&rft.date=2025-01-01&rft.pub=Elsevier+Ltd&rft.issn=0305-0548&rft.volume=173&rft_id=info:doi/10.1016%2Fj.cor.2024.106836&rft.externalDocID=S0305054824003083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon