An Adaptive Threshold Line Segment Feature Extraction Algorithm for Laser Radar Scanning Environments

An accurate map is needed for the autonomous navigation of mobile robots in unknown environments. The application of laser radars has the advantages of high ranging accuracy and long ranging distances. Due to the small amount of data on laser radars and the influence of noise on the sensor itself, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 11; H. 11; S. 1759
Hauptverfasser: Liu, Yiting, Zhang, Lei, Qian, Kui, Sui, Lianjie, Lu, Yuhao, Qian, Fufu, Yan, Tingwu, Yu, Hanqi, Gao, Fangzheng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2022
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract An accurate map is needed for the autonomous navigation of mobile robots in unknown environments. The application of laser radars has the advantages of high ranging accuracy and long ranging distances. Due to the small amount of data on laser radars and the influence of noise on the sensor itself, these amount to causing problems such as low accuracies of map construction and large positioning errors. Currently, the feature extraction of environmental line segments based on radar scanning data generally adopts the idea of recursion. However, the amount of calculations for applying recursion is large, and the threshold of extracted feature points needs to be set manually. Moreover, the fixed segmentation threshold will cause under-segmentation or over-segmentation. In this paper, an adaptive threshold-based feature extraction method for environmental line segments is proposed. The method denoises the original data first, and then an adaptive threshold of the nearest neighbor algorithm is provided to improve the accuracy of breakpoint judgment; next, the slope difference between adjacent line segments is evaluated according to the line segment fitting error in order to obtain the optimal corner feature. Finally, the point set is segmented to fit line-segment features. Based on actual environment tests, the environmental similarity of the line segment features extracted by the new algorithm in this paper increases by 8.3% compared with the IEPF (Iterative End Point Fit) algorithm. The algorithm avoids recursive operations, improves the efficiency by four times, and meets the real-time requirements of line segment fitting.
AbstractList An accurate map is needed for the autonomous navigation of mobile robots in unknown environments. The application of laser radars has the advantages of high ranging accuracy and long ranging distances. Due to the small amount of data on laser radars and the influence of noise on the sensor itself, these amount to causing problems such as low accuracies of map construction and large positioning errors. Currently, the feature extraction of environmental line segments based on radar scanning data generally adopts the idea of recursion. However, the amount of calculations for applying recursion is large, and the threshold of extracted feature points needs to be set manually. Moreover, the fixed segmentation threshold will cause under-segmentation or over-segmentation. In this paper, an adaptive threshold-based feature extraction method for environmental line segments is proposed. The method denoises the original data first, and then an adaptive threshold of the nearest neighbor algorithm is provided to improve the accuracy of breakpoint judgment; next, the slope difference between adjacent line segments is evaluated according to the line segment fitting error in order to obtain the optimal corner feature. Finally, the point set is segmented to fit line-segment features. Based on actual environment tests, the environmental similarity of the line segment features extracted by the new algorithm in this paper increases by 8.3% compared with the IEPF (Iterative End Point Fit) algorithm. The algorithm avoids recursive operations, improves the efficiency by four times, and meets the real-time requirements of line segment fitting.
Author Qian, Fufu
Sui, Lianjie
Yu, Hanqi
Liu, Yiting
Qian, Kui
Lu, Yuhao
Zhang, Lei
Yan, Tingwu
Gao, Fangzheng
Author_xml – sequence: 1
  givenname: Yiting
  surname: Liu
  fullname: Liu, Yiting
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 3
  givenname: Kui
  surname: Qian
  fullname: Qian, Kui
– sequence: 4
  givenname: Lianjie
  surname: Sui
  fullname: Sui, Lianjie
– sequence: 5
  givenname: Yuhao
  surname: Lu
  fullname: Lu, Yuhao
– sequence: 6
  givenname: Fufu
  surname: Qian
  fullname: Qian, Fufu
– sequence: 7
  givenname: Tingwu
  surname: Yan
  fullname: Yan, Tingwu
– sequence: 8
  givenname: Hanqi
  surname: Yu
  fullname: Yu, Hanqi
– sequence: 9
  givenname: Fangzheng
  surname: Gao
  fullname: Gao, Fangzheng
BookMark eNp9UE1LAzEUDFLBWvsLvAQ8V_OxXzmW0qqwINh6XtLkbZuyTWqSFv33ZqkHEXEu7x1m5r2ZazSwzgJCt5Tccy7IA3SgonfWqEB7lLm4QENGSjERTLDBj_0KjUPYkQRBecXJEMHU4qmWh2hOgFdbD2HrOo1rYwEvYbMHG_ECZDx6wPOP6KWKxiVJt3HexO0et87jWgbw-FVq6fFSSWuN3eC5PZn0Ve8QbtBlK7sA4-85Qm-L-Wr2NKlfHp9n03qiOGNx0uZqTZXQsgSgtCoyuqalrLRWBLhQbN1qXrJWkhKI1hnP81aIQlFZZBIqBXyE7s6-B-_ejxBis3NHb9PJhhVlxnkyzRNLnFnKuxA8tI0yUfa5Uj7TNZQ0fbHNH8UmLf-lPXizl_7zX9UX3C-EIQ
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106075
crossref_primary_10_3390_electronics12061373
Cites_doi 10.1109/ACCESS.2020.3016424
10.1023/B:JINT.0000038945.55712.65
10.1109/ACCESS.2015.2455871
10.1109/TIP.2014.2387020
10.1051/itmconf/20171105001
10.1016/j.patcog.2020.107206
10.1088/1742-6596/2095/1/012053
10.1117/12.2580630
10.9746/jcmsi.13.138
10.12720/joace.2.3.270-276
10.1109/LRA.2021.3068682
10.1109/ICARCV.2010.5707254
10.1007/s12524-021-01358-x
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics11111759
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics11111759
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-f5cb1c9da7ee118641b17a8ddc0e39c2bfd372fa07e0dd4355f996c1a64ae8ce3
IEDL.DBID P5Z
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808788000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 08:36:07 EST 2025
Tue Nov 18 21:02:51 EST 2025
Sat Nov 29 07:11:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-f5cb1c9da7ee118641b17a8ddc0e39c2bfd372fa07e0dd4355f996c1a64ae8ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2674331865?pq-origsite=%requestingapplication%
PQID 2674331865
PQPubID 2032404
ParticipantIDs proquest_journals_2674331865
crossref_citationtrail_10_3390_electronics11111759
crossref_primary_10_3390_electronics11111759
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Xu (ref_26) 2015; 24
Gao (ref_30) 2019; 40
Hui (ref_1) 2017; Volume 11
Castellanos (ref_10) 1996; 6
ref_32
Sandy (ref_7) 2021; 5
Chen (ref_18) 2020; 41
Yu (ref_29) 2020; 8
Zhang (ref_14) 2019; 2
Lv (ref_23) 2014; 2
ref_16
Wang (ref_17) 2021; Volume 1757
Tao (ref_5) 2020; 18
Lu (ref_12) 2018; 40
He (ref_19) 2021; Volume 804
Li (ref_27) 2020; 102
Li (ref_9) 2018; 29
ref_25
Sun (ref_6) 2021; 35
ref_24
Rakita (ref_4) 2021; 6
Yang (ref_21) 2020; Volume 446
ref_3
ref_2
Borges (ref_8) 2004; 40
Liu (ref_31) 2021; 53
Pu (ref_15) 2021; 49
Ma (ref_22) 2014; 3276
Li (ref_13) 2018; 24
Yang (ref_28) 2019; 41
Ng (ref_11) 2015; 3
Ravankar (ref_20) 2020; 13
References_xml – volume: 40
  start-page: 2384
  year: 2019
  ident: ref_30
  article-title: Laser radar line feature extraction algorithm combined with SVM
  publication-title: Comput. Eng. Des.
– volume: 41
  start-page: 85
  year: 2020
  ident: ref_18
  article-title: Artificial intelligence technology of laser imaging radar image edge detection
  publication-title: Laser Mag.
– volume: 8
  start-page: 149385
  year: 2020
  ident: ref_29
  article-title: Cutting Plane Based Cylinder Fitting Method With Incomplete Point Cloud Data for Digital Fringe Projection
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3016424
– ident: ref_32
– ident: ref_3
– volume: 40
  start-page: 267
  year: 2004
  ident: ref_8
  article-title: Line extraction in 2D range images for mobile robotics
  publication-title: J. Intell. Robot. Syst.
  doi: 10.1023/B:JINT.0000038945.55712.65
– volume: 3
  start-page: 1079
  year: 2015
  ident: ref_11
  article-title: Wrinkle Detection Using Hessian Line Tracking
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2455871
– ident: ref_16
– volume: 2
  start-page: 78
  year: 2019
  ident: ref_14
  article-title: Splitting and Merging Based Multi-model Fitting for Point Cloud Segmentation
  publication-title: J. Geod. Geoinf. Sci.
– volume: 40
  start-page: 723
  year: 2018
  ident: ref_12
  article-title: Multi-view fusion target detection and recognition based on DSmT theory
  publication-title: Robot
– volume: Volume 804
  start-page: 032053
  year: 2021
  ident: ref_19
  article-title: Power Lines Extraction Using UVA LiDAR Point Clouds in Complex Terrains and Geological Structures
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: 24
  start-page: 813
  year: 2015
  ident: ref_26
  article-title: Accurate and Robust Line Segment Extraction Using Minimum Entropy With Hough Transform
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2387020
– volume: Volume 1757
  start-page: 012082
  year: 2021
  ident: ref_17
  article-title: An Improved Hough Transform Method for Detecting Forward Vehicle and Lane in Road
  publication-title: Journal of Physics: Conference Series
– volume: Volume 446
  start-page: 042011
  year: 2020
  ident: ref_21
  article-title: Research on High Voltage Power Line extraction based on Transmission Line Point Cloud characteristics and Model fitting
  publication-title: IOP Conference Series: Earth and Environmental Science
– volume: Volume 11
  start-page: 05001
  year: 2017
  ident: ref_1
  article-title: Research on Multi-sensor Image Matching Algorithm Based on Improved Line Segments Feature
  publication-title: Itm Web of Conferences
  doi: 10.1051/itmconf/20171105001
– volume: 18
  start-page: 1
  year: 2020
  ident: ref_5
  article-title: An RFID-Based Mobile Robot Localization Method Combining Phase Difference and Readability
  publication-title: IEEE Trans. Autom. Sci. Eng.
– volume: 6
  start-page: 101
  year: 1996
  ident: ref_10
  article-title: Laser-based segmentation and localization for a mobile robot
  publication-title: Robot. Manuf. Recent Trends Res. Appl.
– volume: 3276
  start-page: 590
  year: 2014
  ident: ref_22
  article-title: Point Cloud Feature Extraction Based Integrated Positioning Method for Unmanned Vehicle
  publication-title: Appl. Mech. Mater.
– volume: 102
  start-page: 107206
  year: 2020
  ident: ref_27
  article-title: A novel density-based clustering algorithm using nearest neighbor graph
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107206
– volume: 41
  start-page: 88
  year: 2019
  ident: ref_28
  article-title: Line segment feature extraction method based on density clustering
  publication-title: Manuf. Autom.
– ident: ref_2
  doi: 10.1088/1742-6596/2095/1/012053
– ident: ref_25
  doi: 10.1117/12.2580630
– volume: 13
  start-page: 138
  year: 2020
  ident: ref_20
  article-title: Line Segment Extraction and Polyline Mapping for Mobile Robots in Indoor Structured Environments Using Range Sensors
  publication-title: SICE J. Control Meas. Syst. Integr.
  doi: 10.9746/jcmsi.13.138
– volume: 2
  start-page: 270
  year: 2014
  ident: ref_23
  article-title: Straight line segments extraction and EKF-SLAM in indoor environment
  publication-title: J. Autom. Control Eng.
  doi: 10.12720/joace.2.3.270-276
– volume: 5
  start-page: 264
  year: 2021
  ident: ref_7
  article-title: Hybrid algorithm for line segment feature extraction of laser SLAM autonomous navigation
  publication-title: Mech. Des. Manuf.
– volume: 24
  start-page: 3
  year: 2018
  ident: ref_13
  article-title: Geometric feature map extraction method of laser SLAM based on Hough transform
  publication-title: Mechatronics
– volume: 6
  start-page: 4624
  year: 2021
  ident: ref_4
  article-title: Single-query Path Planning Using Sample-efficient Probability Informed Trees
  publication-title: IEEE Robot. Autom. Lett.
  doi: 10.1109/LRA.2021.3068682
– volume: 29
  start-page: 2733
  year: 2018
  ident: ref_9
  article-title: Feature extraction for map creation of laser navigation robot without reflector
  publication-title: China Mech. Eng.
– volume: 53
  start-page: 366
  year: 2021
  ident: ref_31
  article-title: The extraction method of feature corners in 2D laser SLAM
  publication-title: J. Nanjing Univ. Aeronaut. Astronaut.
– volume: 35
  start-page: 156
  year: 2021
  ident: ref_6
  article-title: Fast registration algorithm for line laser point clouds with contour features
  publication-title: J. Electron. Meas. Instrum.
– ident: ref_24
  doi: 10.1109/ICARCV.2010.5707254
– volume: 49
  start-page: 1
  year: 2021
  ident: ref_15
  article-title: An Automatic Method for Tree Species Point Cloud Segmentation Based on Deep Learning
  publication-title: J. Indian Soc. Remote Sens.
  doi: 10.1007/s12524-021-01358-x
SSID ssj0000913830
Score 2.2414906
Snippet An accurate map is needed for the autonomous navigation of mobile robots in unknown environments. The application of laser radars has the advantages of high...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1759
SubjectTerms Accuracy
Algorithms
Autonomous navigation
Environmental testing
Feature extraction
Laser applications
Lasers
Lidar
Noise
Radar
Radar scanning
Segmentation
Segments
Sensors
Unknown environments
Title An Adaptive Threshold Line Segment Feature Extraction Algorithm for Laser Radar Scanning Environments
URI https://www.proquest.com/docview/2674331865
Volume 11
WOSCitedRecordID wos000808788000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JSsRAEC109KAHd3Ed-uDRYPZOTjJKREGH4ALqJfRSUUHHMcmIJ7_d6iTjAuLFa5ImIVVd9aq6-z2AHcLwIcFabknHRstXkW9JciwLc1-6MvBCxVUtNsH7_ej6Ok7bhlvZbqscx8Q6UOtnZXrke67ZLU8OGAb7wxfLqEaZ1dVWQmMSpgxLgpFuSIPbzx6L4byMPLshG_Kout_70pYpTayg3Bn_TEg_43GdZI7m__t5CzDXwkvWa_xhESZwsASz30gHlwF7A9bTYmjiHLskU5ZmBYpRUYrsAu9Mt5AZYDgqkCVvVdGcfGC9xzt6X3X_xAjmslNKfgU7F1oU7EI1ukcs-XZobgWujpLLw2OrFVuwFM3pysoDJR0Va8ERqegIfUc6XERaKxu9WLky1x53c2FztLUmkBXkVCopR4S-wEihtwqdwfMA14DFXNt5GKCShE-ElFLH2ou9EAM3dh3B18Ed__FMtUzkRhDjMaOKxJgp-8VM67D7OWjYEHH8_fjW2E5ZOyvL7MtIG3_f3oQZ1xxzqLstW9CpihFuw7R6rR7KogtTB0k_Pe_C5Nl70q1djq6lJ2fpzQdSfuSQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z1Lb9NAEMdHJUWCHihP0dKWPcANq_au7fUeEIogVaOmUUSDVE5mH-OCVNJguy18KT4js7Hdh1T11gNnP6S1f5r5z-zODMAb0vApyVoZmCjEILZZHBgCK8AiNtwkIrXSLoZNyPE4OzxUkyX429XC-GOVnU1cGGp3Yn2OfJv70_IEYJp8mP8K_NQov7vajdBosNjDP-cUslXvh5_o_77lfGcw_bgbtFMFAkvw1kGRWBNZ5bREJHWdxpGJpM6csyEKZbkpnJC80KHE0DlSE0lBMYGNdBprzCwKeu89WI497D1Yngz3J18vsjq-y2Ymwqa9kRAq3L6cZlN560TeWl13gdc9wMKt7az-bx_kMTxqBTTrN8Q_gSWcPYWVK20VnwH2Z6zv9NxbcjYlWCu_x8Yo7EZ2gEc-H8q89D0tkQ1-12VT28H6x0e0vvr7T0ZCno3IvZfss3a6ZAe2mezEBlfKAp_DlztZ5wvozU5m-BKYki4s0gStIQWmjTFOOaFEiglXPNJyDXj3h3Pb9lr3Iz-Oc4q5PBb5DViswbuLh-ZNq5Hbb9_ouMhbu1Pll1Cs3375NTzYne6P8tFwvPcKHnJf1LHILW1Ary5PcRPu27P6R1VutYgz-HbXEP0DS7JBdw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTtxAEC0REkXJIWQhggBJH8gt1tjdttt9iNAozCgINBoBkVAuTi9lQIJhYpssv5avS7UXFinixiFnL1K7n6teVVfVA9gkDp8SrZWBiUIMYpvFgSFgBVjEhptEpFbaRmxCTibZ0ZGaLsCfvhfGl1X2NrEx1O7C-hz5gPtqeQJgmgyKrixiuj3emn8PvIKUP2nt5TRaiOzi758UvlUfd7Zpr99zPh4dfvocdAoDgSUg10GRWBNZ5bREJKadxpGJpM6csyEKZbkpnJC80KHE0DliFklB8YGNdBprzCwKeu8DeCgpxvTlhNPk61V-x8_bzETYDjoSQoWDa12bytsp8tvqtjO87QsaBzde-p8_zXN41tFqNmz_gxewgLOX8PTGsMVXgMMZGzo99_adHRKEK3_yxigYR3aAxz5LyjwhviyRjX7VZdvxwYZnx7S--uScEb1ne-T0S7avnS7ZgW31ntjoRrPgMny5l3W-hsXZxQxXgCnpwiJN0BriZdoY45QTSqSYcMUjLVeB97ud224CuxcCOcspEvMQyf8BkVX4cPXQvB1Acvft6z1G8s4aVfk1QN7cffkdPCbk5Hs7k901eMJ9p0eTcFqHxbq8xA14ZH_Up1X5tsE6g2_3jaC_ZGNI2g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Adaptive+Threshold+Line+Segment+Feature+Extraction+Algorithm+for+Laser+Radar+Scanning+Environments&rft.jtitle=Electronics+%28Basel%29&rft.au=Liu%2C+Yiting&rft.au=Zhang%2C+Lei&rft.au=Qian%2C+Kui&rft.au=Sui%2C+Lianjie&rft.date=2022-06-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=11&rft.spage=1759&rft_id=info:doi/10.3390%2Felectronics11111759&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11111759
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon