Deep learning-based decision support system for cervical cancer identification in liquid-based cytology pap smears
BackgroundCervical cancer is the fourth most common cause of women cancer deaths worldwide. The primary etiology of cervical cancer is the persistent infection of specific high-risk strains of the human papillomavirus. Liquid-based cytology is the established method for early detection of cervical c...
Saved in:
| Published in: | Technology and health care Vol. 33; no. 5; p. 2194 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
01.09.2025
|
| Subjects: | |
| ISSN: | 1878-7401, 1878-7401 |
| Online Access: | Get more information |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | BackgroundCervical cancer is the fourth most common cause of women cancer deaths worldwide. The primary etiology of cervical cancer is the persistent infection of specific high-risk strains of the human papillomavirus. Liquid-based cytology is the established method for early detection of cervical cancer. The evaluation of cellular abnormalities at a microscopic level allows for the identification of malignant or precancerous features in liquid-based cytology pap smears. This technique is characterized by its time-consuming nature and susceptibility to both inter- and intra-observer variability. Hence, the utilization of Artificial Intelligence in computer-assisted diagnosis can reduce the duration needed for diagnosing this ailment, thereby eliminating delayed diagnosis and facilitating the implementation of an efficient treatment.ObjectiveThis research presents a new deep learning-based cervical cancer identification decision support system in liquid-based cytology smear images.MethodsThe proposed diagnosis support system incorporates a novel hybrid feature reduction and optimization module, which integrates a sparse Autoencoder with the Binary Harris Hawk metaheuristic optimization algorithm to select the most informative features from a supplemented feature set of the input images. The supplemented feature set is retrieved by three pretrained Convolutional Neural Networks. The module utilizes an improved feature set to conduct a Bayesian-optimized K Nearest Neighbors machine learning classification of cervical cancer in input Pap smears.ResultsThe introduced approach achieves a classification accuracy of 99.9% and demonstrates an improved ability to detect the stages of cervical cancer, with a sensitivity of 99.8%. In addition, the system has the ability to identify the lack of cervical cancer stages with a specificity rate of 99.9%.ConclusionThe proposed system outpaces recent deep learning-based cervical cancer identification systems. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 1878-7401 1878-7401 |
| DOI: | 10.1177/09287329251330081 |