Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder

Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on power systems Ročník 37; číslo 2; s. 1642 - 1652
Hlavní autori: Khazeiynasab, Seyyed Rashid, Zhao, Junbo, Batarseh, Issa, Tan, Bendong
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0885-8950, 1558-0679
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-based approach is developed to identify the critical parameters from a nonlinear system with much better performance than the widely used trajectory sensitivity-based method. Then, synchrophasor measurement-based conditional variational autoencoder is developed to estimate the parameters' posterior distributions even in the presence of a high-dimensional case with eighteen critical parameters to be calibrated. The effectiveness of the proposed method is validated for a hydro generator with a very detailed model. The results show that the proposed approach can accurately and efficiently estimate the generator parameters' posterior distributions even when the parameters true values are not in support of the prior distribution.
AbstractList Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-based approach is developed to identify the critical parameters from a nonlinear system with much better performance than the widely used trajectory sensitivity-based method. Then, synchrophasor measurement-based conditional variational autoencoder is developed to estimate the parameters’ posterior distributions even in the presence of a high-dimensional case with eighteen critical parameters to be calibrated. The effectiveness of the proposed method is validated for a hydro generator with a very detailed model. The results show that the proposed approach can accurately and efficiently estimate the generator parameters’ posterior distributions even when the parameters true values are not in support of the prior distribution.
Not provided.
Author Khazeiynasab, Seyyed Rashid
Tan, Bendong
Batarseh, Issa
Zhao, Junbo
Author_xml – sequence: 1
  givenname: Seyyed Rashid
  orcidid: 0000-0002-7071-4709
  surname: Khazeiynasab
  fullname: Khazeiynasab, Seyyed Rashid
  email: rashid@knights.ucf.edu
  organization: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA
– sequence: 2
  givenname: Junbo
  orcidid: 0000-0002-8498-9666
  surname: Zhao
  fullname: Zhao, Junbo
  email: junbo@ece.msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
– sequence: 3
  givenname: Issa
  orcidid: 0000-0002-8420-1891
  surname: Batarseh
  fullname: Batarseh, Issa
  email: issa.batarseh@ucf.edu
  organization: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA
– sequence: 4
  givenname: Bendong
  orcidid: 0000-0003-1701-1577
  surname: Tan
  fullname: Tan, Bendong
  email: bt1133@msstate.edu
  organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA
BackLink https://www.osti.gov/biblio/1982898$$D View this record in Osti.gov
BookMark eNp9kMtOAyEUhonRxHp5Ad1MdD31AGWApWm8JRrrfUkYhlHMCAo0xreX2saFC1dwzvk_OPm20LoP3iK0h2GMMcij-9nT7d2YAMFjioEzzNbQCDMmami4XEcjEILVQjLYRFspvQJAUwYjdDMLnzZWs0H7XF2Fzg7VTEf9ZnPpTvXg2qizC756SM4_V9PgO7eo9VA96uj06n48z8F6U_i4gzZ6PSS7uzq30cPpyf30vL68PruYHl_WhhKS6x540-i2FJ2AVjQdl5RYzrmRvcS8B9I2PeimN6RlQHlnBPQdGCBcTDrW0W10sHw3pOxUMi5b82KC99ZkhaUgQooSOlyG3mP4mNuU1WuYx7JxUqShfDKhE0lLiixTJoaUou3Ve3RvOn4pDGrhV_34VQu_auW3QOIPVFb48ZGjdsP_6P4Sddba378kI4wSQb8Bgc-Kig
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_est_2023_107979
crossref_primary_10_1109_ACCESS_2022_3188313
crossref_primary_10_1109_TPWRS_2023_3253842
crossref_primary_10_1016_j_egyr_2023_05_110
crossref_primary_10_3390_en16124773
crossref_primary_10_1007_s00034_021_01938_9
crossref_primary_10_3390_en18102461
crossref_primary_10_1109_ACCESS_2024_3481318
crossref_primary_10_1049_gtd2_12554
crossref_primary_10_1007_s10462_023_10513_4
crossref_primary_10_3390_en16041945
crossref_primary_10_1109_TPWRS_2022_3208021
Cites_doi 10.1109/TPWRS.2014.2333776
10.2172/1673609
10.1109/TEC.2011.2140320
10.5555/3454287.3455008
10.1109/TSG.2012.2230031
10.1109/TSG.2021.3077734
10.1109/TII.2019.2950238
10.1002/9780470725184
10.1109/PESGM41954.2020.9281963
10.2307/1268522
10.1109/TEC.2021.3094822
10.1109/TPWRS.2020.3030164
10.1080/00401706.1991.10484804
10.1109/PESGM41954.2020.9282022
10.24251/HICSS.2021.393
10.1109/AUPEC52110.2021.9597726
10.1201/9781315117195
10.1109/TPWRS.2014.2331317
10.1109/TEC.2013.2242074
10.1109/TSG.2016.2519528
10.1109/TSG.2019.2892464
10.1109/LRA.2020.3043163
10.1016/j.epsr.2013.05.016
10.1016/j.envsoft.2006.10.004
10.1109/ISGT49243.2021.9372221
10.1109/TPWRS.2017.2760163
10.1109/TPWRS.2019.2942133
10.1038/s41567-021-01425-7
10.1109/TPWRS.2013.2251482
10.1007/s11222-010-9185-0
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
CorporateAuthor US Department of Energy (USDOE), Washington, DC (United States). Office of Energy Efficiency and Renewable Energy (EERE)
CorporateAuthor_xml – name: US Department of Energy (USDOE), Washington, DC (United States). Office of Energy Efficiency and Renewable Energy (EERE)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
OTOTI
DOI 10.1109/TPWRS.2021.3107515
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0679
EndPage 1652
ExternalDocumentID 1982898
10_1109_TPWRS_2021_3107515
9525328
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: ECCS-1917308
  funderid: 10.13039/501100008982
– fundername: U.S. Department of Energy Advanced Grid Modernization Program
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c322t-f0766abc32d80b86d7932e777c9f917f02b6f0a6fc2b5037dc80fd0c02784d5d3
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766686300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Mon Jun 12 04:07:20 EDT 2023
Fri Jul 25 19:04:01 EDT 2025
Sat Nov 29 02:52:26 EST 2025
Tue Nov 18 21:45:00 EST 2025
Wed Aug 27 02:49:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-f0766abc32d80b86d7932e777c9f917f02b6f0a6fc2b5037dc80fd0c02784d5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE
ORCID 0000-0003-1701-1577
0000-0002-7071-4709
0000-0002-8420-1891
0000-0002-8498-9666
0000000284201891
0000000284989666
0000000317011577
0000000270714709
PQID 2637443493
PQPubID 85441
PageCount 11
ParticipantIDs osti_scitechconnect_1982898
ieee_primary_9525328
proquest_journals_2637443493
crossref_primary_10_1109_TPWRS_2021_3107515
crossref_citationtrail_10_1109_TPWRS_2021_3107515
PublicationCentury 2000
PublicationDate 2022-March
2022-3-00
20220301
2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-March
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
Ivanov (ref34) 2018
ref37
ref14
ref31
ref30
ref11
ref2
ref17
ref39
ref16
ref19
ref18
Kingma (ref33) 2013
(ref1) 2014
Siemens (ref25) 2017
ref24
ref23
ref26
Tonolini (ref32) 2020; 21
ref42
ref22
ref21
Sohn (ref36) 2015; 28
Pedregosa (ref41) 2011; 12
ref28
ref27
ref29
Bobo (ref10) 2017; 65
ref7
ref9
ref4
ref3
ref6
ref5
Huang (ref20) 2019
Snoek (ref40) 2012
(ref8) 2017
Jang (ref38) 2016
References_xml – ident: ref4
  doi: 10.1109/TPWRS.2014.2333776
– year: 2017
  ident: ref8
  article-title: Model-based calibration toolbox
– volume: 28
  start-page: 3483
  year: 2015
  ident: ref36
  article-title: Learning structured output representation using deep conditional generative models
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref39
  doi: 10.2172/1673609
– ident: ref2
  doi: 10.1109/TEC.2011.2140320
– start-page: 2951
  volume-title: Proc. 26th Annu. Conf. Neural Inf. Process. Syst.
  year: 2012
  ident: ref40
  article-title: Practical bayesian optimization of machine learning algorithms
– ident: ref42
  doi: 10.5555/3454287.3455008
– ident: ref6
  doi: 10.1109/TSG.2012.2230031
– ident: ref18
  doi: 10.1109/TSG.2021.3077734
– ident: ref17
  doi: 10.1109/TII.2019.2950238
– ident: ref29
  doi: 10.1002/9780470725184
– year: 2018
  ident: ref34
  article-title: Variational autoencoder with arbitrary conditioning
– ident: ref3
  doi: 10.1109/PESGM41954.2020.9281963
– volume: 21
  start-page: 1
  issue: 179
  year: 2020
  ident: ref32
  article-title: Variational inference for computational imaging inverse problems
  publication-title: J. Mach. Learn. Res.
– ident: ref28
  doi: 10.2307/1268522
– year: 2014
  ident: ref1
  article-title: Standard mod-026-1-verification of models and data for generator excitation control system or plant volt/var control functions
– year: 2017
  ident: ref25
  article-title: PSSE 34.0 model library
– year: 2016
  ident: ref38
  article-title: Categorical reparameterization with gumbel-softmax
– ident: ref24
  doi: 10.1109/TEC.2021.3094822
– ident: ref23
  doi: 10.1109/TPWRS.2020.3030164
– volume: 65
  start-page: 1
  issue: 4
  year: 2017
  ident: ref10
  article-title: Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm
  publication-title: Bull. Pol.
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref41
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.1080/00401706.1991.10484804
– ident: ref22
  doi: 10.1109/PESGM41954.2020.9282022
– ident: ref14
  doi: 10.24251/HICSS.2021.393
– ident: ref19
  doi: 10.1109/AUPEC52110.2021.9597726
– ident: ref30
  doi: 10.1201/9781315117195
– ident: ref5
  doi: 10.1109/TPWRS.2014.2331317
– ident: ref7
  doi: 10.1109/TEC.2013.2242074
– ident: ref11
  doi: 10.1109/TSG.2016.2519528
– ident: ref15
  doi: 10.1109/TSG.2019.2892464
– ident: ref35
  doi: 10.1109/LRA.2020.3043163
– ident: ref12
  doi: 10.1016/j.epsr.2013.05.016
– ident: ref26
  doi: 10.1016/j.envsoft.2006.10.004
– ident: ref21
  doi: 10.1109/ISGT49243.2021.9372221
– ident: ref9
  doi: 10.1109/TPWRS.2017.2760163
– year: 2013
  ident: ref33
  article-title: Auto-encoding variational bayes
– ident: ref16
  doi: 10.1109/TPWRS.2019.2942133
– ident: ref37
  doi: 10.1038/s41567-021-01425-7
– ident: ref13
  doi: 10.1109/TPWRS.2013.2251482
– year: 2019
  ident: ref20
  article-title: Parameters calibration for power grid stability models using deep learning methods
– ident: ref31
  doi: 10.1007/s11222-010-9185-0
SSID ssj0006679
Score 2.4804978
Snippet Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor...
Not provided.
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1642
SubjectTerms Calibration
Computational modeling
Conditional variational autoencoders
Data models
deep learning
elementary effects
Engineering
Generators
Mathematical model
Mathematical models
Nonlinear systems
parameter estimation
Parameter identification
Phasor measurement units
Power plants
power system dynamics
Power system stability
synchrophasor measurements
Title Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder
URI https://ieeexplore.ieee.org/document/9525328
https://www.proquest.com/docview/2637443493
https://www.osti.gov/biblio/1982898
Volume 37
WOSCitedRecordID wos000766686300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tAeSoEiFmjlQ280xXES2zmuUFFPaAtb2JsVvyQktEFLtr-fGSe7WgmE1FMSxXnNeDL-7Jn5AL5r6zR62SKzRVlmiL9cZvNIWcDozr0m9j2byCbU9bWezerJFvxY58KEEFLwWfhJu2kt37duSVNlF3UlqkLobdhWSvW5Wuu_rpR9XT2tqwyfw1cJMry-mE7ub24RCoocESq6SKLA3XBCiVUFNy3a1Ks_cnIzV3v_94Kf4dMwnGTjXv_7sBXmB_Bxo8jgIfyZEBEaI3aijhH12SObNBSShRJllJpl-07AUvQAu2xpETtNELI7BNLDZCEbL7uWil76sPgCf69-TS9_ZwORQubQXrssciVlY_HAa2619GiUIqAMXR0RrkUurIy8kdEJW_FCead59NylVUlf-eIIdubtPBwDy51uSitq5VUsPX5rQ4OOGL1UIVfajyBfSda4oco4kV08moQ2eG2SNgxpwwzaGMH5-pqnvsbGu60PSfDrloPMR3BKCjQ4cKDqt47ChFxn8pogJZ49W-nVDEb6bIQsVFkWZV2cvH3PU_ggKNshhZydwU63WIavsOv-dQ_Pi2-p_70A4tDWvA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VgkQ5lEepurSAD9wg1HEc2zlWFVURZbXAAr1Z8UtCqjbVNsvvZ8bJripRIXFKojivGU_Gnz0zH8Ab47xBL1sVrpKyQPzlC1cmygJGdx4Mse-5TDahp1NzednMtuDdJhcmxpiDz-J72s1r-aHzK5oqO25qUVfC3IP7tZSiHLK1Nv9dpYbKesbUBT6Jr1NkeHM8n_38-g3BoCgRo6KTJBLcW24o86rgpkOr-uufnB3N2eP_e8UnsDsOKNnJ0AOewlZcPINHt8oM7sGXGVGhMeIn6hmRn12xWUtBWShTRslZbugGLMcPsNOOlrHzFCH7gVB6nC5kJ6u-o7KXIS6fw_ezD_PT82KkUig8WmxfJK6Vah0eBMOdUQHNUkSttW8SArbEhVOJtyp54Wpe6eANT4H7vC4Z6lDtw_aiW8QDYKU3rXSi0UEnGfBbWxp2pBSUjqU2YQLlWrLWj3XGie7iyma8wRubtWFJG3bUxgTebq65Hqps_LP1Hgl-03KU-QQOSYEWhw5U_9ZToJDvbdkQqMSzR2u92tFMb6xQlZaykk314u57voaH5_PPF_bi4_TTIewIyn3IAWhHsN0vV_ElPPC_-183y1e5L_4BNdjaAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Plant+Model+Parameter+Calibration+Using+Conditional+Variational+Autoencoder&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Khazeiynasab%2C+Seyyed+Rashid&rft.au=Zhao%2C+Junbo&rft.au=Batarseh%2C+Issa&rft.au=Tan%2C+Bendong&rft.date=2022-03-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=37&rft.issue=2&rft.spage=1642&rft.epage=1652&rft_id=info:doi/10.1109%2FTPWRS.2021.3107515&rft.externalDocID=9525328
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon