Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder
Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-...
Uloženo v:
| Vydáno v: | IEEE transactions on power systems Ročník 37; číslo 2; s. 1642 - 1652 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
IEEE
01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Témata: | |
| ISSN: | 0885-8950, 1558-0679 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-based approach is developed to identify the critical parameters from a nonlinear system with much better performance than the widely used trajectory sensitivity-based method. Then, synchrophasor measurement-based conditional variational autoencoder is developed to estimate the parameters' posterior distributions even in the presence of a high-dimensional case with eighteen critical parameters to be calibrated. The effectiveness of the proposed method is validated for a hydro generator with a very detailed model. The results show that the proposed approach can accurately and efficiently estimate the generator parameters' posterior distributions even when the parameters true values are not in support of the prior distribution. |
|---|---|
| AbstractList | Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor measurement-based generator parameter calibration method by a novel deep learning method with high computational efficiency. An elementary effects-based approach is developed to identify the critical parameters from a nonlinear system with much better performance than the widely used trajectory sensitivity-based method. Then, synchrophasor measurement-based conditional variational autoencoder is developed to estimate the parameters’ posterior distributions even in the presence of a high-dimensional case with eighteen critical parameters to be calibrated. The effectiveness of the proposed method is validated for a hydro generator with a very detailed model. The results show that the proposed approach can accurately and efficiently estimate the generator parameters’ posterior distributions even when the parameters true values are not in support of the prior distribution. Not provided. |
| Author | Khazeiynasab, Seyyed Rashid Tan, Bendong Batarseh, Issa Zhao, Junbo |
| Author_xml | – sequence: 1 givenname: Seyyed Rashid orcidid: 0000-0002-7071-4709 surname: Khazeiynasab fullname: Khazeiynasab, Seyyed Rashid email: rashid@knights.ucf.edu organization: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA – sequence: 2 givenname: Junbo orcidid: 0000-0002-8498-9666 surname: Zhao fullname: Zhao, Junbo email: junbo@ece.msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA – sequence: 3 givenname: Issa orcidid: 0000-0002-8420-1891 surname: Batarseh fullname: Batarseh, Issa email: issa.batarseh@ucf.edu organization: Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL, USA – sequence: 4 givenname: Bendong orcidid: 0000-0003-1701-1577 surname: Tan fullname: Tan, Bendong email: bt1133@msstate.edu organization: Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, USA |
| BackLink | https://www.osti.gov/biblio/1982898$$D View this record in Osti.gov |
| BookMark | eNp9kMtOAyEUhonRxHp5Ad1MdD31AGWApWm8JRrrfUkYhlHMCAo0xreX2saFC1dwzvk_OPm20LoP3iK0h2GMMcij-9nT7d2YAMFjioEzzNbQCDMmami4XEcjEILVQjLYRFspvQJAUwYjdDMLnzZWs0H7XF2Fzg7VTEf9ZnPpTvXg2qizC756SM4_V9PgO7eo9VA96uj06n48z8F6U_i4gzZ6PSS7uzq30cPpyf30vL68PruYHl_WhhKS6x540-i2FJ2AVjQdl5RYzrmRvcS8B9I2PeimN6RlQHlnBPQdGCBcTDrW0W10sHw3pOxUMi5b82KC99ZkhaUgQooSOlyG3mP4mNuU1WuYx7JxUqShfDKhE0lLiixTJoaUou3Ve3RvOn4pDGrhV_34VQu_auW3QOIPVFb48ZGjdsP_6P4Sddba378kI4wSQb8Bgc-Kig |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1016_j_est_2023_107979 crossref_primary_10_1109_ACCESS_2022_3188313 crossref_primary_10_1109_TPWRS_2023_3253842 crossref_primary_10_1016_j_egyr_2023_05_110 crossref_primary_10_3390_en16124773 crossref_primary_10_1007_s00034_021_01938_9 crossref_primary_10_3390_en18102461 crossref_primary_10_1109_ACCESS_2024_3481318 crossref_primary_10_1049_gtd2_12554 crossref_primary_10_1007_s10462_023_10513_4 crossref_primary_10_3390_en16041945 crossref_primary_10_1109_TPWRS_2022_3208021 |
| Cites_doi | 10.1109/TPWRS.2014.2333776 10.2172/1673609 10.1109/TEC.2011.2140320 10.5555/3454287.3455008 10.1109/TSG.2012.2230031 10.1109/TSG.2021.3077734 10.1109/TII.2019.2950238 10.1002/9780470725184 10.1109/PESGM41954.2020.9281963 10.2307/1268522 10.1109/TEC.2021.3094822 10.1109/TPWRS.2020.3030164 10.1080/00401706.1991.10484804 10.1109/PESGM41954.2020.9282022 10.24251/HICSS.2021.393 10.1109/AUPEC52110.2021.9597726 10.1201/9781315117195 10.1109/TPWRS.2014.2331317 10.1109/TEC.2013.2242074 10.1109/TSG.2016.2519528 10.1109/TSG.2019.2892464 10.1109/LRA.2020.3043163 10.1016/j.epsr.2013.05.016 10.1016/j.envsoft.2006.10.004 10.1109/ISGT49243.2021.9372221 10.1109/TPWRS.2017.2760163 10.1109/TPWRS.2019.2942133 10.1038/s41567-021-01425-7 10.1109/TPWRS.2013.2251482 10.1007/s11222-010-9185-0 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 |
| CorporateAuthor | US Department of Energy (USDOE), Washington, DC (United States). Office of Energy Efficiency and Renewable Energy (EERE) |
| CorporateAuthor_xml | – name: US Department of Energy (USDOE), Washington, DC (United States). Office of Energy Efficiency and Renewable Energy (EERE) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OTOTI |
| DOI | 10.1109/TPWRS.2021.3107515 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0679 |
| EndPage | 1652 |
| ExternalDocumentID | 1982898 10_1109_TPWRS_2021_3107515 9525328 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: National Science Foundation grantid: ECCS-1917308 funderid: 10.13039/501100008982 – fundername: U.S. Department of Energy Advanced Grid Modernization Program |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M ABPTK OTOTI |
| ID | FETCH-LOGICAL-c322t-f0766abc32d80b86d7932e777c9f917f02b6f0a6fc2b5037dc80fd0c02784d5d3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000766686300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Mon Jun 12 04:07:20 EDT 2023 Fri Jul 25 19:04:01 EDT 2025 Sat Nov 29 02:52:26 EST 2025 Tue Nov 18 21:45:00 EST 2025 Wed Aug 27 02:49:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-f0766abc32d80b86d7932e777c9f917f02b6f0a6fc2b5037dc80fd0c02784d5d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE |
| ORCID | 0000-0003-1701-1577 0000-0002-7071-4709 0000-0002-8420-1891 0000-0002-8498-9666 0000000284201891 0000000284989666 0000000317011577 0000000270714709 |
| PQID | 2637443493 |
| PQPubID | 85441 |
| PageCount | 11 |
| ParticipantIDs | osti_scitechconnect_1982898 ieee_primary_9525328 proquest_journals_2637443493 crossref_primary_10_1109_TPWRS_2021_3107515 crossref_citationtrail_10_1109_TPWRS_2021_3107515 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-March 2022-3-00 20220301 2022-03-01 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-March |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref35 ref12 ref15 Ivanov (ref34) 2018 ref37 ref14 ref31 ref30 ref11 ref2 ref17 ref39 ref16 ref19 ref18 Kingma (ref33) 2013 (ref1) 2014 Siemens (ref25) 2017 ref24 ref23 ref26 Tonolini (ref32) 2020; 21 ref42 ref22 ref21 Sohn (ref36) 2015; 28 Pedregosa (ref41) 2011; 12 ref28 ref27 ref29 Bobo (ref10) 2017; 65 ref7 ref9 ref4 ref3 ref6 ref5 Huang (ref20) 2019 Snoek (ref40) 2012 (ref8) 2017 Jang (ref38) 2016 |
| References_xml | – ident: ref4 doi: 10.1109/TPWRS.2014.2333776 – year: 2017 ident: ref8 article-title: Model-based calibration toolbox – volume: 28 start-page: 3483 year: 2015 ident: ref36 article-title: Learning structured output representation using deep conditional generative models publication-title: Adv. Neural Inf. Process. Syst. – ident: ref39 doi: 10.2172/1673609 – ident: ref2 doi: 10.1109/TEC.2011.2140320 – start-page: 2951 volume-title: Proc. 26th Annu. Conf. Neural Inf. Process. Syst. year: 2012 ident: ref40 article-title: Practical bayesian optimization of machine learning algorithms – ident: ref42 doi: 10.5555/3454287.3455008 – ident: ref6 doi: 10.1109/TSG.2012.2230031 – ident: ref18 doi: 10.1109/TSG.2021.3077734 – ident: ref17 doi: 10.1109/TII.2019.2950238 – ident: ref29 doi: 10.1002/9780470725184 – year: 2018 ident: ref34 article-title: Variational autoencoder with arbitrary conditioning – ident: ref3 doi: 10.1109/PESGM41954.2020.9281963 – volume: 21 start-page: 1 issue: 179 year: 2020 ident: ref32 article-title: Variational inference for computational imaging inverse problems publication-title: J. Mach. Learn. Res. – ident: ref28 doi: 10.2307/1268522 – year: 2014 ident: ref1 article-title: Standard mod-026-1-verification of models and data for generator excitation control system or plant volt/var control functions – year: 2017 ident: ref25 article-title: PSSE 34.0 model library – year: 2016 ident: ref38 article-title: Categorical reparameterization with gumbel-softmax – ident: ref24 doi: 10.1109/TEC.2021.3094822 – ident: ref23 doi: 10.1109/TPWRS.2020.3030164 – volume: 65 start-page: 1 issue: 4 year: 2017 ident: ref10 article-title: Determination of synchronous generator nonlinear model parameters based on power rejection tests using a gradient optimization algorithm publication-title: Bull. Pol. – volume: 12 start-page: 2825 year: 2011 ident: ref41 article-title: Scikit-learn: Machine learning in python publication-title: J. Mach. Learn. Res. – ident: ref27 doi: 10.1080/00401706.1991.10484804 – ident: ref22 doi: 10.1109/PESGM41954.2020.9282022 – ident: ref14 doi: 10.24251/HICSS.2021.393 – ident: ref19 doi: 10.1109/AUPEC52110.2021.9597726 – ident: ref30 doi: 10.1201/9781315117195 – ident: ref5 doi: 10.1109/TPWRS.2014.2331317 – ident: ref7 doi: 10.1109/TEC.2013.2242074 – ident: ref11 doi: 10.1109/TSG.2016.2519528 – ident: ref15 doi: 10.1109/TSG.2019.2892464 – ident: ref35 doi: 10.1109/LRA.2020.3043163 – ident: ref12 doi: 10.1016/j.epsr.2013.05.016 – ident: ref26 doi: 10.1016/j.envsoft.2006.10.004 – ident: ref21 doi: 10.1109/ISGT49243.2021.9372221 – ident: ref9 doi: 10.1109/TPWRS.2017.2760163 – year: 2013 ident: ref33 article-title: Auto-encoding variational bayes – ident: ref16 doi: 10.1109/TPWRS.2019.2942133 – ident: ref37 doi: 10.1038/s41567-021-01425-7 – ident: ref13 doi: 10.1109/TPWRS.2013.2251482 – year: 2019 ident: ref20 article-title: Parameters calibration for power grid stability models using deep learning methods – ident: ref31 doi: 10.1007/s11222-010-9185-0 |
| SSID | ssj0006679 |
| Score | 2.4804978 |
| Snippet | Accurate models of power plants play an important role in maintaining the reliable and secure grid operations. In this paper, we propose a synchrophasor... Not provided. |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1642 |
| SubjectTerms | Calibration Computational modeling Conditional variational autoencoders Data models deep learning elementary effects Engineering Generators Mathematical model Mathematical models Nonlinear systems parameter estimation Parameter identification Phasor measurement units Power plants power system dynamics Power system stability synchrophasor measurements |
| Title | Power Plant Model Parameter Calibration Using Conditional Variational Autoencoder |
| URI | https://ieeexplore.ieee.org/document/9525328 https://www.proquest.com/docview/2637443493 https://www.osti.gov/biblio/1982898 |
| Volume | 37 |
| WOSCitedRecordID | wos000766686300073&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-QwDLYAcYADy2u1w0s5cINCmkzT5IgQiBMa3tyiyUtaCU1XQ4ffj512Rki7WolTWzWtIjuO8yW2P4BjqZ1MqkoFcXMXw5R84apYFrSY4C6iT4o-k03Ut7f69dWMluB0kQsTY8zBZ_GMbvNZfmj8jLbKzk0lKin0MizXdd3lai1mXaW6unpaV4U2FZ8nyHBz_jh6uX9AKChKRKjoIokC94sTyqwqeGnQpv6akbObuf7xvQ5uwka_nGQXnf63YClOtmH9S5HBHbgbEREaI3ailhH12RsbjSkkCyXKKDXLdYOA5egBdtnQIXbeIGTPCKT7zUJ2MWsbKnoZ4nQXnq6vHi9vip5IofBor22ReK3U2OFD0NxpFdAoRUQZepMQriUunEp8rJIXruKyDl7zFLjPp5KhCvInrEyaSfwFTJWuRCDrdOASoZkxMTjDXeA8KGHUeADlXLLW91XGiezizWa0wY3N2rCkDdtrYwAni2_-dDU2_tt6hwS_aNnLfAD7pECLCweqfuspTMi3tjQEKfHtwVyvtjfSdyuUrIdDOTRy79__3Ic1QdkOOeTsAFba6Swewqr_aH-_T4_y-PsEUtbW8Q |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fSxwxEB7UCrYPbdUWr9qaB990NZtsssmjSMVSPa56rb6Fyy8oyK2ce_37m8nuHYJF6NPustklzGQy-ZKZ-QAOuLI8ShEL5OYuqhhdYUUoC1xMUBuSTwouk03Uw6G6u9OjFTha5sKEEHLwWTjG23yW7xs3x62yEy2Y4EytwitRVazssrWW866UXWU9pUShtKCLFBmqT8aj2-ubBAZZmTBqcpJIgvvEDWVelXRpklU9m5Ozozl_939dfA9v-wUlOe1GwCashOkWvHlSZnAbfoyQCo0gP1FLkPzsnowmGJSVZEowOct2w4Dk-AFy1uAxdt4iJL8SlO63C8npvG2w7KUPsw_w8_zr-Oyi6KkUCpcsti0iraWc2PTgFbVK-mSWLNR17XRMgC1SZmWkExkds4Ly2jtFo6cun0t64flHWJs207ADRJa2TFDWKk95AmdaB281tZ5SL5mWkwGUC8ka19cZR7qLe5PxBtUma8OgNkyvjQEcLr956KpsvNh6GwW_bNnLfAC7qECTlg5Y_9ZhoJBrTakRVKa3ewu9mt5MHw2TvK4qXmn-6d__3IeNi_HVpbn8Nvy-C68Z5j7kALQ9WGtn8_AZ1t2f9vfj7Esei38BqafaOA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Power+Plant+Model+Parameter+Calibration+Using+Conditional+Variational+Autoencoder&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Seyyed+Rashid+Khazeiynasab&rft.au=Zhao%2C+Junbo&rft.au=Batarseh%2C+Issa&rft.au=Tan%2C+Bendong&rft.date=2022-03-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0885-8950&rft.eissn=1558-0679&rft.volume=37&rft.issue=2&rft.spage=1642&rft_id=info:doi/10.1109%2FTPWRS.2021.3107515&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |