A Pseudospectral Fictitious Point Method for High Order Initial‐Boundary Value Problems

When pseudospectral approximations are used for space derivatives, one often encounters spurious eigenvalues. These can lead to severe time stepping difficulties for PDEs. This is especially the case for equations with high order derivatives in space, requiring multiple conditions at one or both bou...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing Jg. 28; H. 5; S. 1716 - 1729
1. Verfasser: Fornberg, Bengt
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Philadelphia Society for Industrial and Applied Mathematics 01.01.2006
Schlagworte:
ISSN:1064-8275, 1095-7197
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:When pseudospectral approximations are used for space derivatives, one often encounters spurious eigenvalues. These can lead to severe time stepping difficulties for PDEs. This is especially the case for equations with high order derivatives in space, requiring multiple conditions at one or both boundaries. We note here that a very simple-to-implement fictitious point approach circumvents most of these difficulties. The new approach is tested on the Kuramoto-Sivashinsky equation and on a dispersive linear PDE featuring a time-space corner singularity.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:1064-8275
1095-7197
DOI:10.1137/040611252