Applying instance space analysis for metaheuristic selection to the 0–1 multidemand multidimensional knapsack problem

The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multi...

Full description

Saved in:
Bibliographic Details
Published in:Computers & operations research Vol. 170; p. 106747
Main Authors: Scherer, Matthew E., Hill, Raymond R., Lunday, Brian J., Cox, Bruce A., White, Edward D.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.10.2024
Subjects:
ISSN:0305-0548
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multidemand multidimensional knapsack problem (MDMKP) specifically considering problem structure. This research leverages instance space analysis (ISA) to graphically depict both the multidimensional problem structure and metaheuristic performance. A new instance generation method augments the existing set of test instances; in doing so, it introduces correlation structure into the problem and helps ensure MDMKP instance feasibility. Testing compares four metaheuristics from the literature and trains an interpretable machine learning model to select a metaheuristic for a given instance based on that problem’s meta-features. The results show that the correlation structure meta-features are significant factors affecting metaheuristic performance and that a decision tree model can provide interpretable insights into the algorithm selection problem. This work demonstrates the usefulness of ISA for rigorous empirical testing to enhance understanding the performance of metaheuristics applied to the MDMKP. •Metaheuristic Selection with Instance Space Analysis.•Propose interpretable Machine Learning method for Algorithm Selection Problem.•Apply Algorithm Selection Problem to Multidemand Multidimensional Knapsack Problem.
AbstractList The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the optimization problem test instances employed. This paper presents a methodology for analyzing the performance of metaheuristics applied to the 0–1 multidemand multidimensional knapsack problem (MDMKP) specifically considering problem structure. This research leverages instance space analysis (ISA) to graphically depict both the multidimensional problem structure and metaheuristic performance. A new instance generation method augments the existing set of test instances; in doing so, it introduces correlation structure into the problem and helps ensure MDMKP instance feasibility. Testing compares four metaheuristics from the literature and trains an interpretable machine learning model to select a metaheuristic for a given instance based on that problem’s meta-features. The results show that the correlation structure meta-features are significant factors affecting metaheuristic performance and that a decision tree model can provide interpretable insights into the algorithm selection problem. This work demonstrates the usefulness of ISA for rigorous empirical testing to enhance understanding the performance of metaheuristics applied to the MDMKP. •Metaheuristic Selection with Instance Space Analysis.•Propose interpretable Machine Learning method for Algorithm Selection Problem.•Apply Algorithm Selection Problem to Multidemand Multidimensional Knapsack Problem.
ArticleNumber 106747
Author Cox, Bruce A.
Lunday, Brian J.
Scherer, Matthew E.
Hill, Raymond R.
White, Edward D.
Author_xml – sequence: 1
  givenname: Matthew E.
  orcidid: 0009-0001-2316-0299
  surname: Scherer
  fullname: Scherer, Matthew E.
  email: matthewescherer97@gmail.com
– sequence: 2
  givenname: Raymond R.
  surname: Hill
  fullname: Hill, Raymond R.
– sequence: 3
  givenname: Brian J.
  surname: Lunday
  fullname: Lunday, Brian J.
– sequence: 4
  givenname: Bruce A.
  surname: Cox
  fullname: Cox, Bruce A.
– sequence: 5
  givenname: Edward D.
  surname: White
  fullname: White, Edward D.
BookMark eNp9kDtOAzEQQF0EiSRwADpfIMHej21EFUX8pEg0UFuz3lniZNe7sh1QOu7ADTkJjpKKIlPMR5o30rwJGbneISE3nM054-J2Mze9n2csK9IsZCFHZMxyVs5YWahLMglhw1LIjI_J12IY2r11H9S6EMEZpGGAlMFBuw820Kb3tMMIa9x5G6I1NGCLJtre0djTuEbKfr9_OO12bbQ1duDqU287dCHtQUu3DoYAZksH31ctdlfkooE24PWpTsn748Pb8nm2en16WS5WM5NnWZyhMqaolSy5gqZggkkoK8NAQFEhAhdlJVnFM1kVZS2kuuOGCVQqVzmXUlT5lPDjXeP7EDw2evC2A7_XnOmDLb3RyZY-2NJHW4mR_xhjIxwejh5se5a8P5KYXvq06HUwFpPU2vqkTNe9PUP_AfeYjDU
CitedBy_id crossref_primary_10_1016_j_ejor_2025_02_006
crossref_primary_10_59324_ejaset_2025_3_2__08
crossref_primary_10_1016_j_softx_2025_102246
Cites_doi 10.1287/opre.42.2.201
10.1609/aaai.v36i9.21194
10.1080/03610918208812265
10.1016/j.ejor.2018.10.001
10.1287/opre.1070.0398
10.1007/s10994-017-5629-5
10.1007/s10732-008-9100-4
10.1016/j.ijforecast.2016.09.004
10.1016/j.ejor.2023.04.023
10.12928/ijio.v3i1.5073
10.1007/BF02430364
10.1016/j.cor.2013.11.015
10.1016/j.cor.2011.07.006
10.1016/j.ejor.2021.12.009
10.1145/3436893
10.1016/j.cor.2020.105184
10.1038/s42256-019-0048-x
10.1016/j.ejor.2022.04.012
10.1007/s10951-021-00701-x
10.1016/S0065-2458(08)60520-3
10.1023/A:1009642405419
10.1080/0305215X.2019.1658748
10.1162/evco_a_00262
10.1145/1456650.1456656
10.1287/ijoc.1090.0330
10.1016/S0166-218X(03)00431-1
10.1007/s10994-017-5633-9
10.1016/j.cor.2004.03.002
10.1145/3572895
10.1287/ijoc.2.1.94
10.1109/4235.585893
10.1016/j.cor.2005.07.007
10.1080/0305215X.2021.1933965
10.1007/s10618-019-00661-z
10.1016/j.cor.2015.04.022
10.1287/ijoc.1030.0050
10.1016/j.cor.2010.06.009
10.1287/mnsc.46.2.302.11930
ContentType Journal Article
Copyright 2024
Copyright_xml – notice: 2024
DBID AAYXX
CITATION
DOI 10.1016/j.cor.2024.106747
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
ExternalDocumentID 10_1016_j_cor_2024_106747
S0305054824002193
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1OL
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQXK
AARIN
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABMMH
ABUCO
ABXDB
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
AEBSH
AEFWE
AEHXG
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ARUGR
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSO
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
UAO
UPT
VH1
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c322t-e8cc4d87518af40607a5bc0a6a4beea165b70b127b45d67891c06e883831776b3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001271441400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0305-0548
IngestDate Tue Nov 18 22:04:17 EST 2025
Sat Nov 29 03:23:47 EST 2025
Sat Aug 31 16:00:29 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristics
Instance space analysis
Algorithm selection problem
Multidemand multidimensional knapsack problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-e8cc4d87518af40607a5bc0a6a4beea165b70b127b45d67891c06e883831776b3
ORCID 0009-0001-2316-0299
ParticipantIDs crossref_primary_10_1016_j_cor_2024_106747
crossref_citationtrail_10_1016_j_cor_2024_106747
elsevier_sciencedirect_doi_10_1016_j_cor_2024_106747
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Computers & operations research
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Lin, Zhong, Hu, Rudin, Seltzer (b31) 2020
Muñoz, Villanova, Baatar, Smith-Miles (b36) 2018; 107
Muñoz, Smith-Miles (b34) 2020
Rudin (b41) 2019; 1
Hvattum, Lø kketangen (b22) 2007
Arntzen, Hvattum, Løkketangen (b2) 2006; 33
Hill, Moore, Hiremath, Cho (b16) 2011; 18
Iman, Conover (b23) 1982; 11
Glover, Kochenberger (b11) 1996
Smith-Miles (b44) 2009; 41
Lai, Hao, Yue (b29) 2019; 274
Smith-Miles, Baatar, Wreford, Lewis (b46) 2014; 45
Kang, Hyndman, Smith-Miles (b27) 2017; 33
Pisinger (b38) 2005; 32
Scherer, Hill, Lunday, Cox, White (b43) 2023
Smith-Miles, Lopes (b49) 2012; 39
McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C., Seltzer, M., 2022. Fast sparse decision tree optimization via reference ensembles. In: Proceedings of the Thirty Sixth AAAI Conference on Artificial Intelligence. pp. 9604–9613.
Hu, Rudin, Seltzer (b20) 2019; 32
Reilly (b39) 2009; 21
Scherer (b42) 2024
Bierwirth, Mattfeld, Watson (b4) 2004
Cappanera, Trubian (b6) 2005; 17
Jooken, Leyman, De Causmaecker (b25) 2023; 311
Hill, Cho, Moore (b15) 2012; 39
Wolpert, Macready (b52) 1997; 1
Chu, Beasley (b8) 1998; 4
Glover, Kochenberger (b12) 2006
Smith-Miles (b45) 2019
Greenberg (b13) 1990; 2
Hall, Posner (b14) 2007; 55
Smith-Miles, Christiansen, Muñoz (b48) 2021; 128
Bertsimas, Dunn (b3) 2017; 106
Jooken, Leyman, De Causmaecker (b24) 2022; 301
Smith-Miles, Bowly (b47) 2015; 63
Hill, Reilly (b17) 2000; 46
Muñoz, Yan, Leal, Smith-Miles, Lorena, Pappa, Rodrigues (b37) 2021; 15
Song, Emerick, Lu, Vasko (b51) 2022; 54
Kandanaarachchi, Muñoz, Hyndman, Smith-Miles (b26) 2020; 34
Hooker (b19) 1995; 1
Hvattum, Arntzen, Lø kketangen, Glover (b21) 2010; 16
Lu, Vasko (b32) 2020; 52
Cho, Moore, Hill, Reilly (b7) 2008; 3
Hooker (b18) 1994; 42
Cappanera, Gallo, Maffioli (b5) 2003; 133
Laguna, Martí (b28) 2003
Alipour, Muñoz, Smith-Miles (b1) 2023; 304
Rice (b40) 1976; 15
Muñoz, Smith-Miles (b35) 2020; 28
Lamine, Khemakhem, Chabchoub (b30) 2012; 46
Smith-Miles, Muñoz (b50) 2023; 55
Dellinger, Lu, Song, Vasko (b10) 2022; 3
De Coster, Musliu, Schaerf, Schoisswohl, Smith-Miles (b9) 2022; 25
Smith-Miles (10.1016/j.cor.2024.106747_b48) 2021; 128
Lamine (10.1016/j.cor.2024.106747_b30) 2012; 46
Smith-Miles (10.1016/j.cor.2024.106747_b45) 2019
Iman (10.1016/j.cor.2024.106747_b23) 1982; 11
Glover (10.1016/j.cor.2024.106747_b12) 2006
10.1016/j.cor.2024.106747_b33
Kang (10.1016/j.cor.2024.106747_b27) 2017; 33
Lin (10.1016/j.cor.2024.106747_b31) 2020
Muñoz (10.1016/j.cor.2024.106747_b36) 2018; 107
Pisinger (10.1016/j.cor.2024.106747_b38) 2005; 32
Hill (10.1016/j.cor.2024.106747_b15) 2012; 39
Reilly (10.1016/j.cor.2024.106747_b39) 2009; 21
Arntzen (10.1016/j.cor.2024.106747_b2) 2006; 33
Hooker (10.1016/j.cor.2024.106747_b18) 1994; 42
Hill (10.1016/j.cor.2024.106747_b17) 2000; 46
Hu (10.1016/j.cor.2024.106747_b20) 2019; 32
Jooken (10.1016/j.cor.2024.106747_b25) 2023; 311
Jooken (10.1016/j.cor.2024.106747_b24) 2022; 301
Muñoz (10.1016/j.cor.2024.106747_b37) 2021; 15
Kandanaarachchi (10.1016/j.cor.2024.106747_b26) 2020; 34
Cappanera (10.1016/j.cor.2024.106747_b6) 2005; 17
Smith-Miles (10.1016/j.cor.2024.106747_b46) 2014; 45
Bierwirth (10.1016/j.cor.2024.106747_b4) 2004
Scherer (10.1016/j.cor.2024.106747_b43) 2023
Smith-Miles (10.1016/j.cor.2024.106747_b50) 2023; 55
Bertsimas (10.1016/j.cor.2024.106747_b3) 2017; 106
Lu (10.1016/j.cor.2024.106747_b32) 2020; 52
Dellinger (10.1016/j.cor.2024.106747_b10) 2022; 3
Cappanera (10.1016/j.cor.2024.106747_b5) 2003; 133
Rice (10.1016/j.cor.2024.106747_b40) 1976; 15
Smith-Miles (10.1016/j.cor.2024.106747_b49) 2012; 39
Scherer (10.1016/j.cor.2024.106747_b42) 2024
Hill (10.1016/j.cor.2024.106747_b16) 2011; 18
Song (10.1016/j.cor.2024.106747_b51) 2022; 54
Lai (10.1016/j.cor.2024.106747_b29) 2019; 274
Hall (10.1016/j.cor.2024.106747_b14) 2007; 55
Cho (10.1016/j.cor.2024.106747_b7) 2008; 3
Wolpert (10.1016/j.cor.2024.106747_b52) 1997; 1
Smith-Miles (10.1016/j.cor.2024.106747_b44) 2009; 41
Smith-Miles (10.1016/j.cor.2024.106747_b47) 2015; 63
Greenberg (10.1016/j.cor.2024.106747_b13) 1990; 2
Alipour (10.1016/j.cor.2024.106747_b1) 2023; 304
Hooker (10.1016/j.cor.2024.106747_b19) 1995; 1
De Coster (10.1016/j.cor.2024.106747_b9) 2022; 25
Laguna (10.1016/j.cor.2024.106747_b28) 2003
Hvattum (10.1016/j.cor.2024.106747_b21) 2010; 16
Chu (10.1016/j.cor.2024.106747_b8) 1998; 4
Hvattum (10.1016/j.cor.2024.106747_b22) 2007
Muñoz (10.1016/j.cor.2024.106747_b34) 2020
Glover (10.1016/j.cor.2024.106747_b11) 1996
Muñoz (10.1016/j.cor.2024.106747_b35) 2020; 28
Rudin (10.1016/j.cor.2024.106747_b41) 2019; 1
References_xml – reference: McTavish, H., Zhong, C., Achermann, R., Karimalis, I., Chen, J., Rudin, C., Seltzer, M., 2022. Fast sparse decision tree optimization via reference ensembles. In: Proceedings of the Thirty Sixth AAAI Conference on Artificial Intelligence. pp. 9604–9613.
– volume: 33
  start-page: 2508
  year: 2006
  end-page: 2525
  ident: b2
  article-title: Adaptive memory search for multidemand multidimensional knapsack problems
  publication-title: Comput. Oper. Res.
– volume: 52
  start-page: 1632
  year: 2020
  end-page: 1644
  ident: b32
  article-title: A comprehensive empirical demonstration of the impact of choice constraints on solving generalizations of the 0–1 knapsack problem using the integer programming option of CPLEX®
  publication-title: Eng. Optim.
– volume: 304
  start-page: 411
  year: 2023
  end-page: 428
  ident: b1
  article-title: Enhanced instance space analysis for the maximum flow problem
  publication-title: European J. Oper. Res.
– volume: 18
  start-page: 105
  year: 2011
  end-page: 128
  ident: b16
  article-title: Test problem generation of binary knapsack problem variants and the implications of their use
  publication-title: Int. J. Oper. Quant. Manag.
– year: 2024
  ident: b42
  article-title: Scherer multidemand multidimensional KP instances
– volume: 1
  start-page: 33
  year: 1995
  end-page: 42
  ident: b19
  article-title: Testing heuristics: We have it all wrong
  publication-title: J. Heuristics
– volume: 3
  start-page: 1
  year: 2022
  end-page: 17
  ident: b10
  article-title: Generating bounded solutions for multi-demand multidimensional knapsack problems: a guide for operations research practitioners
  publication-title: Int. J. Ind. Optim.
– volume: 45
  start-page: 12
  year: 2014
  end-page: 24
  ident: b46
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Comput. Oper. Res.
– volume: 32
  year: 2019
  ident: b20
  article-title: Optimal sparse decision trees
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 41
  start-page: 1
  year: 2009
  end-page: 25
  ident: b44
  article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection
  publication-title: ACM Comput. Surv.
– volume: 25
  start-page: 1
  year: 2022
  end-page: 24
  ident: b9
  article-title: Algorithm selection and instance space analysis for curriculum-based course timetabling
  publication-title: J. Sched.
– volume: 55
  start-page: 703
  year: 2007
  end-page: 716
  ident: b14
  article-title: Performance prediction and preselection for optimization and heuristic solution procedures
  publication-title: Oper. Res.
– volume: 1
  start-page: 206
  year: 2019
  end-page: 215
  ident: b41
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
– volume: 28
  start-page: 379
  year: 2020
  end-page: 404
  ident: b35
  article-title: Generating new space-filling test instances for continuous black-box optimization
  publication-title: Evolut. Comput.
– volume: 15
  start-page: 65
  year: 1976
  end-page: 118
  ident: b40
  article-title: The algorithm selection problem
  publication-title: Adv. Comput.
– volume: 46
  start-page: 71
  year: 2012
  end-page: 94
  ident: b30
  article-title: Knapsack problems involving dimensions, demands and multiple choice constraints: generalization and transformations between formulations
  publication-title: Int. J. Adv. Sci. Technol.
– volume: 32
  start-page: 2271
  year: 2005
  end-page: 2284
  ident: b38
  article-title: Where are the hard knapsack problems?
  publication-title: Comput. Oper. Res.
– volume: 107
  start-page: 109
  year: 2018
  end-page: 147
  ident: b36
  article-title: Instance spaces for machine learning classification
  publication-title: Mach. Learn.
– year: 2019
  ident: b45
  article-title: MATILDA: melbourne algorithm test instance library with data analytics
– volume: 55
  start-page: 1
  year: 2023
  end-page: 31
  ident: b50
  article-title: Instance space analysis for algorithm testing: Methodology and software tools
  publication-title: ACM Comput. Surv.
– volume: 311
  start-page: 36
  year: 2023
  end-page: 55
  ident: b25
  article-title: Features for the 0-1 knapsack problem based on inclusionwise maximal solutions
  publication-title: European J. Oper. Res.
– volume: 274
  start-page: 35
  year: 2019
  end-page: 48
  ident: b29
  article-title: Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem
  publication-title: European J. Oper. Res.
– start-page: 21
  year: 2004
  end-page: 30
  ident: b4
  article-title: Landscape regularity and random walks for the job-shop scheduling problem
  publication-title: European Conference on Evolutionary Computation in Combinatorial Optimization
– volume: 42
  start-page: 201
  year: 1994
  end-page: 212
  ident: b18
  article-title: Needed: An empirical science of algorithms
  publication-title: Oper. Res.
– volume: 106
  start-page: 1039
  year: 2017
  end-page: 1082
  ident: b3
  article-title: Optimal classification trees
  publication-title: Mach. Learn.
– volume: 2
  start-page: 94
  year: 1990
  end-page: 97
  ident: b13
  article-title: Computational testing: Why, how and how much
  publication-title: ORSA J. Comput.
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b52
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 311
  year: 1982
  end-page: 334
  ident: b23
  article-title: A distribution-free approach to inducing rank correlation among input variables
  publication-title: Comm. Statist. Simulation Comput.
– volume: 301
  start-page: 841
  year: 2022
  end-page: 854
  ident: b24
  article-title: A new class of hard problem instances for the 0–1 knapsack problem
  publication-title: European J. Oper. Res.
– year: 2003
  ident: b28
  article-title: Scatter Search: Methodology and Implementations in C
– year: 2020
  ident: b34
  article-title: Instance Space Analysis: A Toolkit for the Assessment of Algorithmic Power
– volume: 21
  start-page: 458
  year: 2009
  end-page: 467
  ident: b39
  article-title: Synthetic optimization problem generation: show us the correlations!
  publication-title: INFORMS J. Comput.
– start-page: 3
  year: 2007
  end-page: 24
  ident: b22
  article-title: Experiments using scatter search for the multidemand multidimensional knapsack problem
  publication-title: Metaheuristics
– volume: 16
  start-page: 239
  year: 2010
  end-page: 258
  ident: b21
  article-title: Alternating control tree search for knapsack/covering problems
  publication-title: J. Heuristics
– volume: 133
  start-page: 3
  year: 2003
  end-page: 28
  ident: b5
  article-title: Discrete facility location and routing of obnoxious activities
  publication-title: Discrete Appl. Math.
– start-page: 6150
  year: 2020
  end-page: 6160
  ident: b31
  article-title: Generalized and scalable optimal sparse decision trees
  publication-title: International Conference on Machine Learning
– volume: 46
  start-page: 302
  year: 2000
  end-page: 317
  ident: b17
  article-title: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance
  publication-title: Manage. Sci.
– volume: 34
  start-page: 309
  year: 2020
  end-page: 354
  ident: b26
  article-title: On normalization and algorithm selection for unsupervised outlier detection
  publication-title: Data Min. Knowl. Discov.
– start-page: 407
  year: 1996
  end-page: 427
  ident: b11
  article-title: Critical event tabu search for multidimensional knapsack problems
  publication-title: Meta-Heuristics
– volume: 4
  start-page: 63
  year: 1998
  end-page: 86
  ident: b8
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: J. Heuristics
– volume: 54
  start-page: 894
  year: 2022
  end-page: 906
  ident: b51
  article-title: When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners
  publication-title: Eng. Optim.
– volume: 3
  start-page: 530
  year: 2008
  end-page: 548
  ident: b7
  article-title: Exploiting empirical knowledge for bi-dimensional knapsack problem heuristics
  publication-title: Int. J. Ind. Syst. Eng.
– volume: 15
  start-page: 1
  year: 2021
  end-page: 25
  ident: b37
  article-title: An instance space analysis of regression problems
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
– year: 2023
  ident: b43
  article-title: Verifying new instances of the multidemand multidimensional knapsack problem with instance space analysis
  publication-title: Comput. Oper. Res.
– volume: 128
  year: 2021
  ident: b48
  article-title: Revisiting where are the hard knapsack problems? via instance space analysis
  publication-title: Comput. Oper. Res.
– year: 2006
  ident: b12
  article-title: Handbook of Metaheuristics
– volume: 63
  start-page: 102
  year: 2015
  end-page: 113
  ident: b47
  article-title: Generating new test instances by evolving in instance space
  publication-title: Comput. Oper. Res.
– volume: 39
  start-page: 875
  year: 2012
  end-page: 889
  ident: b49
  article-title: Measuring instance difficulty for combinatorial optimization problems
  publication-title: Comput. Oper. Res.
– volume: 33
  start-page: 345
  year: 2017
  end-page: 358
  ident: b27
  article-title: Visualising forecasting algorithm performance using time series instance spaces
  publication-title: Int. J. Forecast.
– volume: 39
  start-page: 19
  year: 2012
  end-page: 26
  ident: b15
  article-title: Problem reduction heuristic for the 0–1 multidimensional knapsack problem
  publication-title: Comput. Oper. Res.
– volume: 17
  start-page: 82
  year: 2005
  end-page: 98
  ident: b6
  article-title: A local-search-based heuristic for the demand-constrained multidimensional knapsack problem
  publication-title: INFORMS J. Comput.
– volume: 42
  start-page: 201
  issue: 2
  year: 1994
  ident: 10.1016/j.cor.2024.106747_b18
  article-title: Needed: An empirical science of algorithms
  publication-title: Oper. Res.
  doi: 10.1287/opre.42.2.201
– ident: 10.1016/j.cor.2024.106747_b33
  doi: 10.1609/aaai.v36i9.21194
– volume: 11
  start-page: 311
  issue: 3
  year: 1982
  ident: 10.1016/j.cor.2024.106747_b23
  article-title: A distribution-free approach to inducing rank correlation among input variables
  publication-title: Comm. Statist. Simulation Comput.
  doi: 10.1080/03610918208812265
– volume: 274
  start-page: 35
  issue: 1
  year: 2019
  ident: 10.1016/j.cor.2024.106747_b29
  article-title: Two-stage solution-based tabu search for the multidemand multidimensional knapsack problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2018.10.001
– volume: 55
  start-page: 703
  issue: 4
  year: 2007
  ident: 10.1016/j.cor.2024.106747_b14
  article-title: Performance prediction and preselection for optimization and heuristic solution procedures
  publication-title: Oper. Res.
  doi: 10.1287/opre.1070.0398
– start-page: 6150
  year: 2020
  ident: 10.1016/j.cor.2024.106747_b31
  article-title: Generalized and scalable optimal sparse decision trees
– year: 2019
  ident: 10.1016/j.cor.2024.106747_b45
– volume: 46
  start-page: 71
  year: 2012
  ident: 10.1016/j.cor.2024.106747_b30
  article-title: Knapsack problems involving dimensions, demands and multiple choice constraints: generalization and transformations between formulations
  publication-title: Int. J. Adv. Sci. Technol.
– volume: 107
  start-page: 109
  issue: 1
  year: 2018
  ident: 10.1016/j.cor.2024.106747_b36
  article-title: Instance spaces for machine learning classification
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5629-5
– volume: 16
  start-page: 239
  issue: 3
  year: 2010
  ident: 10.1016/j.cor.2024.106747_b21
  article-title: Alternating control tree search for knapsack/covering problems
  publication-title: J. Heuristics
  doi: 10.1007/s10732-008-9100-4
– volume: 33
  start-page: 345
  issue: 2
  year: 2017
  ident: 10.1016/j.cor.2024.106747_b27
  article-title: Visualising forecasting algorithm performance using time series instance spaces
  publication-title: Int. J. Forecast.
  doi: 10.1016/j.ijforecast.2016.09.004
– year: 2024
  ident: 10.1016/j.cor.2024.106747_b42
– volume: 311
  start-page: 36
  issue: 1
  year: 2023
  ident: 10.1016/j.cor.2024.106747_b25
  article-title: Features for the 0-1 knapsack problem based on inclusionwise maximal solutions
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2023.04.023
– volume: 3
  start-page: 1
  issue: 1
  year: 2022
  ident: 10.1016/j.cor.2024.106747_b10
  article-title: Generating bounded solutions for multi-demand multidimensional knapsack problems: a guide for operations research practitioners
  publication-title: Int. J. Ind. Optim.
  doi: 10.12928/ijio.v3i1.5073
– volume: 1
  start-page: 33
  issue: 1
  year: 1995
  ident: 10.1016/j.cor.2024.106747_b19
  article-title: Testing heuristics: We have it all wrong
  publication-title: J. Heuristics
  doi: 10.1007/BF02430364
– year: 2023
  ident: 10.1016/j.cor.2024.106747_b43
  article-title: Verifying new instances of the multidemand multidimensional knapsack problem with instance space analysis
  publication-title: Comput. Oper. Res.
– year: 2020
  ident: 10.1016/j.cor.2024.106747_b34
– volume: 3
  start-page: 530
  issue: 5
  year: 2008
  ident: 10.1016/j.cor.2024.106747_b7
  article-title: Exploiting empirical knowledge for bi-dimensional knapsack problem heuristics
  publication-title: Int. J. Ind. Syst. Eng.
– volume: 45
  start-page: 12
  year: 2014
  ident: 10.1016/j.cor.2024.106747_b46
  article-title: Towards objective measures of algorithm performance across instance space
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2013.11.015
– year: 2003
  ident: 10.1016/j.cor.2024.106747_b28
– volume: 39
  start-page: 875
  issue: 5
  year: 2012
  ident: 10.1016/j.cor.2024.106747_b49
  article-title: Measuring instance difficulty for combinatorial optimization problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.07.006
– start-page: 21
  year: 2004
  ident: 10.1016/j.cor.2024.106747_b4
  article-title: Landscape regularity and random walks for the job-shop scheduling problem
– volume: 301
  start-page: 841
  issue: 3
  year: 2022
  ident: 10.1016/j.cor.2024.106747_b24
  article-title: A new class of hard problem instances for the 0–1 knapsack problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2021.12.009
– volume: 15
  start-page: 1
  issue: 2
  year: 2021
  ident: 10.1016/j.cor.2024.106747_b37
  article-title: An instance space analysis of regression problems
  publication-title: ACM Trans. Knowl. Discov. Data (TKDD)
  doi: 10.1145/3436893
– volume: 128
  year: 2021
  ident: 10.1016/j.cor.2024.106747_b48
  article-title: Revisiting where are the hard knapsack problems? via instance space analysis
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2020.105184
– volume: 32
  year: 2019
  ident: 10.1016/j.cor.2024.106747_b20
  article-title: Optimal sparse decision trees
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 1
  start-page: 206
  issue: 5
  year: 2019
  ident: 10.1016/j.cor.2024.106747_b41
  article-title: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0048-x
– volume: 304
  start-page: 411
  issue: 2
  year: 2023
  ident: 10.1016/j.cor.2024.106747_b1
  article-title: Enhanced instance space analysis for the maximum flow problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2022.04.012
– start-page: 3
  year: 2007
  ident: 10.1016/j.cor.2024.106747_b22
  article-title: Experiments using scatter search for the multidemand multidimensional knapsack problem
– volume: 25
  start-page: 1
  year: 2022
  ident: 10.1016/j.cor.2024.106747_b9
  article-title: Algorithm selection and instance space analysis for curriculum-based course timetabling
  publication-title: J. Sched.
  doi: 10.1007/s10951-021-00701-x
– volume: 18
  start-page: 105
  issue: 2
  year: 2011
  ident: 10.1016/j.cor.2024.106747_b16
  article-title: Test problem generation of binary knapsack problem variants and the implications of their use
  publication-title: Int. J. Oper. Quant. Manag.
– volume: 15
  start-page: 65
  year: 1976
  ident: 10.1016/j.cor.2024.106747_b40
  article-title: The algorithm selection problem
  publication-title: Adv. Comput.
  doi: 10.1016/S0065-2458(08)60520-3
– volume: 4
  start-page: 63
  issue: 1
  year: 1998
  ident: 10.1016/j.cor.2024.106747_b8
  article-title: A genetic algorithm for the multidimensional knapsack problem
  publication-title: J. Heuristics
  doi: 10.1023/A:1009642405419
– volume: 52
  start-page: 1632
  issue: 9
  year: 2020
  ident: 10.1016/j.cor.2024.106747_b32
  article-title: A comprehensive empirical demonstration of the impact of choice constraints on solving generalizations of the 0–1 knapsack problem using the integer programming option of CPLEX®
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2019.1658748
– volume: 28
  start-page: 379
  issue: 3
  year: 2020
  ident: 10.1016/j.cor.2024.106747_b35
  article-title: Generating new space-filling test instances for continuous black-box optimization
  publication-title: Evolut. Comput.
  doi: 10.1162/evco_a_00262
– volume: 41
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.cor.2024.106747_b44
  article-title: Cross-disciplinary perspectives on meta-learning for algorithm selection
  publication-title: ACM Comput. Surv.
  doi: 10.1145/1456650.1456656
– volume: 21
  start-page: 458
  issue: 3
  year: 2009
  ident: 10.1016/j.cor.2024.106747_b39
  article-title: Synthetic optimization problem generation: show us the correlations!
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1090.0330
– volume: 133
  start-page: 3
  issue: 1–3
  year: 2003
  ident: 10.1016/j.cor.2024.106747_b5
  article-title: Discrete facility location and routing of obnoxious activities
  publication-title: Discrete Appl. Math.
  doi: 10.1016/S0166-218X(03)00431-1
– volume: 106
  start-page: 1039
  year: 2017
  ident: 10.1016/j.cor.2024.106747_b3
  article-title: Optimal classification trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-017-5633-9
– volume: 32
  start-page: 2271
  issue: 9
  year: 2005
  ident: 10.1016/j.cor.2024.106747_b38
  article-title: Where are the hard knapsack problems?
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2004.03.002
– volume: 55
  start-page: 1
  issue: 12
  year: 2023
  ident: 10.1016/j.cor.2024.106747_b50
  article-title: Instance space analysis for algorithm testing: Methodology and software tools
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3572895
– volume: 2
  start-page: 94
  issue: 1
  year: 1990
  ident: 10.1016/j.cor.2024.106747_b13
  article-title: Computational testing: Why, how and how much
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.2.1.94
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.cor.2024.106747_b52
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– volume: 33
  start-page: 2508
  issue: 9
  year: 2006
  ident: 10.1016/j.cor.2024.106747_b2
  article-title: Adaptive memory search for multidemand multidimensional knapsack problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2005.07.007
– start-page: 407
  year: 1996
  ident: 10.1016/j.cor.2024.106747_b11
  article-title: Critical event tabu search for multidimensional knapsack problems
– volume: 54
  start-page: 894
  issue: 5
  year: 2022
  ident: 10.1016/j.cor.2024.106747_b51
  article-title: When to use Integer Programming Software to solve large multi-demand multidimensional knapsack problems: a guide for operations research practitioners
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2021.1933965
– year: 2006
  ident: 10.1016/j.cor.2024.106747_b12
– volume: 34
  start-page: 309
  issue: 2
  year: 2020
  ident: 10.1016/j.cor.2024.106747_b26
  article-title: On normalization and algorithm selection for unsupervised outlier detection
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-019-00661-z
– volume: 63
  start-page: 102
  year: 2015
  ident: 10.1016/j.cor.2024.106747_b47
  article-title: Generating new test instances by evolving in instance space
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2015.04.022
– volume: 17
  start-page: 82
  issue: 1
  year: 2005
  ident: 10.1016/j.cor.2024.106747_b6
  article-title: A local-search-based heuristic for the demand-constrained multidimensional knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1030.0050
– volume: 39
  start-page: 19
  issue: 1
  year: 2012
  ident: 10.1016/j.cor.2024.106747_b15
  article-title: Problem reduction heuristic for the 0–1 multidimensional knapsack problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2010.06.009
– volume: 46
  start-page: 302
  issue: 2
  year: 2000
  ident: 10.1016/j.cor.2024.106747_b17
  article-title: The effects of coefficient correlation structure in two-dimensional knapsack problems on solution procedure performance
  publication-title: Manage. Sci.
  doi: 10.1287/mnsc.46.2.302.11930
SSID ssj0000721
Score 2.466828
Snippet The empirical testing of metaheuristic solution methods for optimization applications should consider the effect of the underlying structure of the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106747
SubjectTerms Algorithm selection problem
Instance space analysis
Metaheuristics
Multidemand multidimensional knapsack problem
Title Applying instance space analysis for metaheuristic selection to the 0–1 multidemand multidimensional knapsack problem
URI https://dx.doi.org/10.1016/j.cor.2024.106747
Volume 170
WOSCitedRecordID wos001271441400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0305-0548
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000721
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LjtMwFLVKByFmwaOAGF7yghVRqiR17GRZoSIYoREaBqm7yHYcMY-mVZt57fgHfoOv4ku4jh_NFAYxCzaRlYcT9Z76Htv3novQa5oomKKJMoxERUPw-DzMgQiHREgwdxWXVSraYhNsby-bTvNPvd4PlwtzdsLqOru4yBf_1dRwDoytU2dvYG7fKZyANhgdjmB2OP6T4TWvvDSZKpr5aQlZmBfrXQIrP6IDC2eq4V_VqZFpDlZtMRwNBMtEIxcDMYpNyGGpZnqF3bR1QQAj5hEc13yx4vI4sIVpulzXFYxYtfCaL9TSht1ZgSG_EP1ZA8dAx5YfDybD9Zq42RjZ55cznWuz7698bJNYDED1MLXrr9jiyS1ug_Gwu7KREB8j5zO6dGBhapQ4_Wht6ozY8VYL4BnFzt9cgVmVOAJLatnXhAzX916V3d5whz5I0cW_HRXQRaG7KEwXt9BWwtI866Ot8YfJdHft-Vmb5-e_2-2it_GEG9_xZx7U4TYHD9A9OynBYwOmh6in6gG643IiBui-MyW2rmCAtjtClo_QuQMddqDDLeiwAx0G0OEroMMedLiZYzA6jn5--x7jDtzwJtywgxu2cHuMvrybHLx9H9qSHqEEz9GEKpOSlJne6-MVcMmI8VTIiFNOhFI8pqlgkYgTJkhaAo_KYxlRlWWjDHguo2L0BPXrea2eIsxyKhkRhAADJ5FU0OJqVBFWcUJJRXdQ5H7gQlq9e1125aS41rA76I1_ZGHEXv52M3FWKyxbNSy0AARe_9izm7zjObq7_mO8QP1meapeotvyrDlcLV9Z-P0CLmC4AQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applying+instance+space+analysis+for+metaheuristic+selection+to+the+0%E2%80%931+multidemand+multidimensional+knapsack+problem&rft.jtitle=Computers+%26+operations+research&rft.au=Scherer%2C+Matthew+E.&rft.au=Hill%2C+Raymond+R.&rft.au=Lunday%2C+Brian+J.&rft.au=Cox%2C+Bruce+A.&rft.date=2024-10-01&rft.issn=0305-0548&rft.volume=170&rft.spage=106747&rft_id=info:doi/10.1016%2Fj.cor.2024.106747&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cor_2024_106747
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-0548&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-0548&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-0548&client=summon