Rule-based spreadsheet data transformation from arbitrary to relational tables

•Spreadsheet data transformation can be considered as table understanding.•The two-layered table object model represents arbitrary spreadsheet tables.•Our rule-based language enables to express consecutive steps of table understanding.•Execution of the rules provides recovering implicit table semant...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information systems (Oxford) Jg. 71; S. 123 - 136
Hauptverfasser: Shigarov, Alexey O., Mikhailov, Andrey A.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Oxford Elsevier Ltd 01.11.2017
Elsevier Science Ltd
Schlagworte:
ISSN:0306-4379, 1873-6076
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Spreadsheet data transformation can be considered as table understanding.•The two-layered table object model represents arbitrary spreadsheet tables.•Our rule-based language enables to express consecutive steps of table understanding.•Execution of the rules provides recovering implicit table semantic (structure).•A rule-set allows converting arbitrary tables of the same genre into databases. The paper discusses issues of rule-based data transformation from arbitrary spreadsheet tables to a canonical (relational) form. We present a novel table object model and rule-based language for table analysis and interpretation. The model is intended to represent a physical (cellular) and logical (semantic) structure of an arbitrary table in the transformation process. The language allows drawing up this process as consecutive steps of table understanding, i. e. recovering implicit semantics. Both are implemented in our tool for spreadsheet data canonicalization. The presented case study demonstrates the use of the tool for developing a task-specific rule-set to convert data from arbitrary tables of the same genre (government statistical websites) to flat file databases. The performance evaluation confirms the applicability of the implemented rule-set in accomplishing the stated objectives of the application.
AbstractList The paper discusses issues of rule-based data transformation from arbitrary spreadsheet tables to a canonical (relational) form. We present a novel table object model and rule-based language for table analysis and interpretation. The model is intended to represent a physical (cellular) and logical (semantic) structure of an arbitrary table in the transformation process. The language allows drawing up this process as consecutive steps of table understanding, i. e. recovering implicit semantics. Both are implemented in our tool for spreadsheet data canonicalization. The presented case study demonstrates the use of the tool for developing a task-specific rule-set to convert data from arbitrary tables of the same genre (government statistical websites) to flat file databases. The performance evaluation confirms the applicability of the implemented rule-set in accomplishing the stated objectives of the application.
•Spreadsheet data transformation can be considered as table understanding.•The two-layered table object model represents arbitrary spreadsheet tables.•Our rule-based language enables to express consecutive steps of table understanding.•Execution of the rules provides recovering implicit table semantic (structure).•A rule-set allows converting arbitrary tables of the same genre into databases. The paper discusses issues of rule-based data transformation from arbitrary spreadsheet tables to a canonical (relational) form. We present a novel table object model and rule-based language for table analysis and interpretation. The model is intended to represent a physical (cellular) and logical (semantic) structure of an arbitrary table in the transformation process. The language allows drawing up this process as consecutive steps of table understanding, i. e. recovering implicit semantics. Both are implemented in our tool for spreadsheet data canonicalization. The presented case study demonstrates the use of the tool for developing a task-specific rule-set to convert data from arbitrary tables of the same genre (government statistical websites) to flat file databases. The performance evaluation confirms the applicability of the implemented rule-set in accomplishing the stated objectives of the application.
Author Mikhailov, Andrey A.
Shigarov, Alexey O.
Author_xml – sequence: 1
  givenname: Alexey O.
  surname: Shigarov
  fullname: Shigarov, Alexey O.
  email: shigarov@icc.ru, shigarov@gmail.com
– sequence: 2
  givenname: Andrey A.
  surname: Mikhailov
  fullname: Mikhailov, Andrey A.
  email: mikhailov@icc.ru
BookMark eNp9kE1LAzEQhoNUsK3ePS543nXy0WzjTYpfUBREzyGbTDFlu6lJKvjvTa0nQU8DM_MM87wTMhrCgIScU2goUHm5bnxqGNC2gXkDII7ImM5bXkto5YiMgYOsBW_VCZmktAYANlNqTB6fdz3WnUnoqrSNaFx6Q8yVM9lUOZohrULcmOzDUK1i2FQmdr7042eVQxWx_x6Zvsqm6zGdkuOV6ROe_dQpeb29eVnc18unu4fF9bK2nLFcI-vMzHIhlLWSg3KidUJYsJxynMFMyLkFqZy0zDrWSWq4NZQZZpArqQSfkovD3W0M7ztMWa_DLpY_kqZKFudi2pYtediyMaQUcaWtz98PFwPfawp6n51ea5_0PjsNc12yKyD8ArfRb4r0f8jVAcGi_eEx6mQ9Dhadj2izdsH_DX8BhgWIVA
CitedBy_id crossref_primary_10_1002_widm_1482
crossref_primary_10_1016_j_jss_2020_110615
crossref_primary_10_32604_cmc_2024_050143
crossref_primary_10_3390_app10186182
crossref_primary_10_1134_S1995080225606150
crossref_primary_10_1108_IJIUS_08_2019_0047
crossref_primary_10_1109_ACCESS_2021_3130172
crossref_primary_10_1134_S1054661823030094
crossref_primary_10_1162_dint_a_00201
crossref_primary_10_1002_widm_1407
crossref_primary_10_1109_ACCESS_2023_3323846
Cites_doi 10.1007/s10032-016-0259-1
10.1016/j.datak.2004.10.004
10.14778/2536274.2536276
10.14778/1453856.1453916
10.1007/978-3-642-34213-4_2
10.1016/j.ijhcs.2017.02.006
10.14778/2002938.2002939
10.1145/1993316.1993536
10.1007/978-3-642-04930-9_23
10.14778/1920841.1921005
10.1016/j.csi.2007.08.006
10.1007/978-3-540-88564-1_29
10.14778/2536258.2536271
10.1016/j.eswa.2014.08.045
10.1145/2536669.2536674
10.1007/978-3-319-32025-0_33
10.1016/j.jvlc.2006.06.001
10.1016/j.datak.2009.02.010
10.1145/2813885.2737952
10.1007/s10515-014-0167-x
10.1016/j.datak.2006.04.002
10.1007/s10032-005-0001-x
10.14778/2536336.2536343
10.1007/s11280-005-0360-8
10.1016/j.is.2016.10.010
10.1007/978-3-319-11964-9_31
10.1007/978-3-642-17749-1_13
10.1007/978-3-319-49004-5_11
10.1145/2240236.2240260
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright Elsevier Science Ltd. Nov 2017
Copyright_xml – notice: 2017 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Nov 2017
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.is.2017.08.004
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1873-6076
EndPage 136
ExternalDocumentID 10_1016_j_is_2017_08_004
S0306437917304301
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
13V
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
63O
7-5
71M
77K
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABTAH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HAMUX
HF~
HLZ
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SSV
SSZ
T5K
TN5
UHS
VH1
WUQ
XSW
ZCG
ZY4
~G-
77I
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c322t-e2ba5c3449cc6309d47d44c0c313e505468c069d6c2cd2b61a3ca12a2ae396943
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000413385200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0306-4379
IngestDate Fri Nov 14 22:21:13 EST 2025
Tue Nov 18 21:50:04 EST 2025
Sat Nov 29 06:20:17 EST 2025
Fri Feb 23 02:35:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Spreadsheet data transformation
Table interpretation
Rule-based programming
Table model
Table understanding
Table analysis
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-e2ba5c3449cc6309d47d44c0c313e505468c069d6c2cd2b61a3ca12a2ae396943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1966073797
PQPubID 2035446
PageCount 14
ParticipantIDs proquest_journals_1966073797
crossref_citationtrail_10_1016_j_is_2017_08_004
crossref_primary_10_1016_j_is_2017_08_004
elsevier_sciencedirect_doi_10_1016_j_is_2017_08_004
PublicationCentury 2000
PublicationDate November 2017
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: November 2017
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Information systems (Oxford)
PublicationYear 2017
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Cao, Manolescu, Tannier (bib0062) 2017
Lautert, Scheidt, Dorneles (bib0006) 2013; 42
Nagy, Embley, Krishnamoorthy, Seth (bib0031) 2015; 9402
Deng, Jiang, Li, Li, Yu (bib0038) 2013; 6
Koci, Thiele, Romero, Lehner (bib0030) 2016
Adelfio, Samet (bib0024) 2013; 6
Chen (bib0017) 2016
M.J. O’Connor, C. Halaschek-Wiener, M.A. Musen, Mapping Master: A Flexible Approach for Mapping Spreadsheets to OWL, 194–208. 10.1007/978-3-642-17749-1_13.
e Silva, Jorge, Torgo (bib0009) 2006; 8
Yang, Guo, Wei (bib0065) 2017; 69
Nagy (bib0011) 2012
Z. Zhang, Towards Efficient and Effective Semantic Table Interpretation, pp. 487–502. doi
Crestan, Pantel (bib0004) 2011
Galkin, Mouromtsev, Auer (bib0049) 2015
I. Ermilov, A.-C. N. Ngomo, TAIPAN: Automatic Property Mapping for Tabular Data, 163–179. doi
Jin, Anderson, Cafarella, Jagadish (bib0056) 2017
Muñoz, Hogan, Mileo (bib0039) 2014
Abraham, Erwig (bib0019) 2007; 18
Shigarov (bib0063) 2015; 42
G. Nagy, TANGO-DocLab web tables from international statistical sites (Troy_200), 1, ID: Troy_200_1, 2016
Nagy, Seth (bib0032) 2016
Raman, Hellerstein (bib0051) 2001
Limaye, Sarawagi, Chakrabarti (bib0036) 2010; 3
L. Han, T. Finin, C. Parr, J. Sachs, A. Joshi, RDF123: From Spreadsheets to RDF, 451–466. doi
A. Shigarov, TabbyXL: Experiment data, (Mendeley Data, v1), 2017. doi
Pivk, Cimiano, Sure, Gams, Rajkovič, Studer (bib0018) 2007; 60
Barowy, Gulwani, Hart, Zorn (bib0058) 2015; 50
Hurst (bib0008) 2001
.
Hung, Benatallah, Saint-Paul (bib0057) 2011
Embley, Krishnamoorthy, Nagy, Seth (bib0015) 2016; 19
Nagy, Embley, Seth (bib0027) 2014
Cunha, Erwig, Mendes, Saraiva (bib0054) 2016; 23
Seth, Nagy (bib0022) 2013
R. Rastan, H.-y. Paik, J. Shepherd, A. Haller, Automated table understanding using stub patterns, pp. 533–548. doi
Venetis, Halevy, Madhavan, Paşca, Shen, Wu, Miao, Wu (bib0035) 2011; 4
Yoshida, Matsumoto, Kita (bib0043) 2016
A. Langegger, W. Wöß, XLWrap - Querying and Integrating Arbitrary Spreadsheets with SPARQL, 359–374. doi
Shigarov, Paramonov, Belykh, Bondarev (bib0012) 2016
de Vos, Wielemaker, Rijgersberg, Schreiber, Wielinga, Top (bib0061) 2017; 103
Mauro, Esposito, Ferilli (bib0023) 2013
V. Mulwad, T. Finin, A. Joshi, A Domain Independent Framework for Extracting Linked Semantic Data from Tables, 16–33. doi
Gulwani, Harris, Singh (bib0055) 2012; 55
Cunha, Saraiva, Visser (bib0053) 2009
Wang (bib0010) 1996
Chen, Cafarella (bib0016) 2014
Cafarella, Halevy, Wang, Wu, Zhang (bib0001) 2008; 1
Harris, Gulwani (bib0059) 2011; 46
Tao, Embley (bib0021) 2009; 68
Goto, Ohta, Inakoshi, Yugami (bib0029) 2016
Shigarov (bib0064) 2015
Braunschweig (bib0007) 2015
Lehmberg, Ritze, Meusel, Bizer (bib0003) 2016
Tijerino, Embley, Lonsdale, Ding, Nagy (bib0034) 2005; 8
Fiorelli, Lorenzetti, Pazienza, Stellato, Turbati (bib0048) 2015
Kim, Lee (bib0020) 2008; 30
Embley, Tao, Liddle (bib0033) 2005; 54
Shigarov, Mikhailov, Altaev (bib0066) 2016
Kandel, Paepcke, Hellerstein, Heer (bib0052) 2011
Eberius, Braunschweig, Hentsch, Thiele, Ahmadov, Lehner (bib0002) 2015
Embley, Seth, Nagy (bib0026) 2014
Wang, Wang, Wang, Zhu (bib0040) 2012
Govindaraju, Zhang, Ré (bib0041) 2013; 2: Short Papers
Chen, Rong, Dadiomov, Wesley, Xiao, Cory, Cafarella, Mackinlay (bib0060) 2016
Chen, Cafarella, Chen, Prevo, Zhuang (bib0025) 2013; 6
Chen, Cafarella (bib0005) 2013
Mulwad, Finin, Syed, Joshi (bib0037) 2010; 665
Venetis (10.1016/j.is.2017.08.004_bib0035) 2011; 4
Limaye (10.1016/j.is.2017.08.004_bib0036) 2010; 3
de Vos (10.1016/j.is.2017.08.004_bib0061) 2017; 103
Crestan (10.1016/j.is.2017.08.004_bib0004) 2011
10.1016/j.is.2017.08.004_bib0050
Shigarov (10.1016/j.is.2017.08.004_bib0063) 2015; 42
Barowy (10.1016/j.is.2017.08.004_bib0058) 2015; 50
Hurst (10.1016/j.is.2017.08.004_bib0008) 2001
Embley (10.1016/j.is.2017.08.004_bib0033) 2005; 54
Cunha (10.1016/j.is.2017.08.004_bib0054) 2016; 23
Shigarov (10.1016/j.is.2017.08.004_bib0066) 2016
Raman (10.1016/j.is.2017.08.004_bib0051) 2001
Hung (10.1016/j.is.2017.08.004_bib0057) 2011
Muñoz (10.1016/j.is.2017.08.004_bib0039) 2014
Chen (10.1016/j.is.2017.08.004_bib0017) 2016
Cafarella (10.1016/j.is.2017.08.004_bib0001) 2008; 1
10.1016/j.is.2017.08.004_bib0014
10.1016/j.is.2017.08.004_bib0013
Braunschweig (10.1016/j.is.2017.08.004_bib0007) 2015
Chen (10.1016/j.is.2017.08.004_bib0025) 2013; 6
Nagy (10.1016/j.is.2017.08.004_bib0011) 2012
Shigarov (10.1016/j.is.2017.08.004_bib0012) 2016
Mauro (10.1016/j.is.2017.08.004_bib0023) 2013
Lautert (10.1016/j.is.2017.08.004_bib0006) 2013; 42
Goto (10.1016/j.is.2017.08.004_bib0029) 2016
Seth (10.1016/j.is.2017.08.004_bib0022) 2013
Chen (10.1016/j.is.2017.08.004_bib0060) 2016
Embley (10.1016/j.is.2017.08.004_bib0015) 2016; 19
Kim (10.1016/j.is.2017.08.004_bib0020) 2008; 30
Koci (10.1016/j.is.2017.08.004_bib0030) 2016
e Silva (10.1016/j.is.2017.08.004_bib0009) 2006; 8
10.1016/j.is.2017.08.004_bib0028
Govindaraju (10.1016/j.is.2017.08.004_bib0041) 2013; 2: Short Papers
Deng (10.1016/j.is.2017.08.004_bib0038) 2013; 6
Embley (10.1016/j.is.2017.08.004_bib0026) 2014
Tijerino (10.1016/j.is.2017.08.004_bib0034) 2005; 8
Eberius (10.1016/j.is.2017.08.004_bib0002) 2015
Fiorelli (10.1016/j.is.2017.08.004_bib0048) 2015
Wang (10.1016/j.is.2017.08.004_bib0040) 2012
Chen (10.1016/j.is.2017.08.004_bib0005) 2013
Abraham (10.1016/j.is.2017.08.004_bib0019) 2007; 18
Tao (10.1016/j.is.2017.08.004_bib0021) 2009; 68
Cao (10.1016/j.is.2017.08.004_bib0062) 2017
Shigarov (10.1016/j.is.2017.08.004_bib0064) 2015
Galkin (10.1016/j.is.2017.08.004_bib0049) 2015
Lehmberg (10.1016/j.is.2017.08.004_bib0003) 2016
Cunha (10.1016/j.is.2017.08.004_bib0053) 2009
Harris (10.1016/j.is.2017.08.004_bib0059) 2011; 46
Yang (10.1016/j.is.2017.08.004_bib0065) 2017; 69
10.1016/j.is.2017.08.004_bib0042
Pivk (10.1016/j.is.2017.08.004_bib0018) 2007; 60
Yoshida (10.1016/j.is.2017.08.004_bib0043) 2016
Kandel (10.1016/j.is.2017.08.004_bib0052) 2011
Nagy (10.1016/j.is.2017.08.004_bib0031) 2015; 9402
Chen (10.1016/j.is.2017.08.004_bib0016) 2014
Mulwad (10.1016/j.is.2017.08.004_bib0037) 2010; 665
Wang (10.1016/j.is.2017.08.004_bib0010) 1996
Nagy (10.1016/j.is.2017.08.004_bib0032) 2016
Gulwani (10.1016/j.is.2017.08.004_bib0055) 2012; 55
Adelfio (10.1016/j.is.2017.08.004_bib0024) 2013; 6
Nagy (10.1016/j.is.2017.08.004_bib0027) 2014
10.1016/j.is.2017.08.004_bib0045
10.1016/j.is.2017.08.004_bib0044
10.1016/j.is.2017.08.004_bib0047
Jin (10.1016/j.is.2017.08.004_bib0056) 2017
10.1016/j.is.2017.08.004_bib0046
References_xml – start-page: 882
  year: 2013
  end-page: 886
  ident: bib0023
  article-title: Finding critical cells in web tables with SRL: Trying to uncover the devil’s tease
  publication-title: Proc. 12th Int. Conf. on Document Analysis and Recognition
– reference: Z. Zhang, Towards Efficient and Effective Semantic Table Interpretation, pp. 487–502. doi:
– volume: 42
  start-page: 28
  year: 2013
  end-page: 33
  ident: bib0006
  article-title: Web table taxonomy and formalization
  publication-title: SIGMOD Rec.
– reference: A. Shigarov, TabbyXL: Experiment data, (Mendeley Data, v1), 2017. doi:
– volume: 3
  start-page: 1338
  year: 2010
  end-page: 1347
  ident: bib0036
  article-title: Annotating and searching web tables using entities, types and relationships
  publication-title: Proc. VLDB Endow.
– volume: 46
  start-page: 317
  year: 2011
  end-page: 328
  ident: bib0059
  article-title: Spreadsheet table transformations from examples
  publication-title: SIGPLAN Not.
– start-page: 119
  year: 2016
  end-page: 122
  ident: bib0066
  article-title: Configurable table structure recognition in untagged PDF documents
  publication-title: Proc. ACM Symposium on Document Engineering
– year: 2016
  ident: bib0017
  publication-title: Information extraction on para-relational data
– volume: 60
  start-page: 567
  year: 2007
  end-page: 595
  ident: bib0018
  article-title: Transforming arbitrary tables into logical form with TARTAR
  publication-title: Data Knowl. Eng.
– reference: A. Langegger, W. Wöß, XLWrap - Querying and Integrating Arbitrary Spreadsheets with SPARQL, 359–374. doi:
– start-page: 302
  year: 2016
  end-page: 307
  ident: bib0043
  article-title: Table topic models for hidden unit estimation
  publication-title: Proc. 12th Asia Information Retrieval Societies Conference
– volume: 54
  start-page: 3
  year: 2005
  end-page: 28
  ident: bib0033
  article-title: Automating the extraction of data from HTML tables with unknown structure
  publication-title: Data Knowl. Eng.
– volume: 6
  start-page: 1202
  year: 2013
  end-page: 1205
  ident: bib0025
  article-title: Senbazuru: a prototype spreadsheet database management system
  publication-title: Proc. VLDB Endow.
– start-page: 887
  year: 2013
  end-page: 891
  ident: bib0022
  article-title: Segmenting tables via indexing of value cells by table headers
  publication-title: Proc. 12th Int. Conf. Document Analysis and Recognition
– volume: 4
  start-page: 528
  year: 2011
  end-page: 538
  ident: bib0035
  article-title: Recovering semantics of tables on the web
  publication-title: Proc. VLDB Endow.
– start-page: 533
  year: 2014
  end-page: 542
  ident: bib0039
  article-title: Using linked data to mine RDF from wikipedia’s tables
  publication-title: Proc. 7th ACM Int. Conf. Web Search and Data Mining
– volume: 6
  start-page: 1606
  year: 2013
  end-page: 1617
  ident: bib0038
  article-title: Scalable column concept determination for web tables using large knowledge bases
  publication-title: Proc. VLDB Endow.
– volume: 665
  start-page: 109
  year: 2010
  end-page: 120
  ident: bib0037
  article-title: Using linked data to interpret tables
  publication-title: Proc. 1st Int. Conf. Consuming Linked Data
– year: 2015
  ident: bib0007
  publication-title: Recovering the semantics of tabular web data
– year: 2016
  ident: bib0060
  article-title: Spreadsheet Property Detection with Rule-assisted Active Learning
  publication-title: Technical Report
– volume: 55
  start-page: 97
  year: 2012
  end-page: 105
  ident: bib0055
  article-title: Spreadsheet data manipulation using examples
  publication-title: Commun. ACM
– reference: R. Rastan, H.-y. Paik, J. Shepherd, A. Haller, Automated table understanding using stub patterns, pp. 533–548. doi:
– volume: 18
  start-page: 71
  year: 2007
  end-page: 95
  ident: bib0019
  article-title: UCHeck: a spreadsheet type checker for end users
  publication-title: J. Visual Lang. Comput.
– start-page: 381
  year: 2001
  end-page: 390
  ident: bib0051
  article-title: Potter’s wheel: an interactive data cleaning system
  publication-title: Proc. the 27th Int. Conf. Very Large Data Bases
– volume: 1
  start-page: 538
  year: 2008
  end-page: 549
  ident: bib0001
  article-title: Webtables: exploring the power of tables on the web
  publication-title: Proc. VLDB Endow.
– start-page: 2781
  year: 2014
  end-page: 2786
  ident: bib0026
  article-title: Transforming web tables to a relational database
  publication-title: Proc. 22nd Int. Conf. Pattern Recognition
– start-page: 4065
  year: 2016
  end-page: 4070
  ident: bib0032
  article-title: Table headers: an entrance to the data mine
  publication-title: Proc. 23rd Int. Conf. Pattern Recognition
– reference: I. Ermilov, A.-C. N. Ngomo, TAIPAN: Automatic Property Mapping for Tabular Data, 163–179. doi:
– start-page: 75
  year: 2016
  end-page: 76
  ident: bib0003
  article-title: A large public corpus of web tables containing time and context metadata
  publication-title: Proc. 25th Int. Conf. Companion on World Wide Web
– volume: 9402
  year: 2015
  ident: bib0031
  article-title: Clustering header categories extracted from web tables
  publication-title: Proc. SPIE
– reference: V. Mulwad, T. Finin, A. Joshi, A Domain Independent Framework for Extracting Linked Semantic Data from Tables, 16–33. doi:
– start-page: 222
  year: 2014
  end-page: 226
  ident: bib0027
  article-title: End-to-end conversion of HTML tables for populating a relational database
  publication-title: Proc. 11th IAPR Int. Workshop Document Analysis Systems
– volume: 69
  start-page: 195
  year: 2017
  end-page: 217
  ident: bib0065
  article-title: Semantic interoperability with heterogeneous information systems on the internet through automatic tabular document exchange
  publication-title: Inf. Syst.
– reference: L. Han, T. Finin, C. Parr, J. Sachs, A. Joshi, RDF123: From Spreadsheets to RDF, 451–466. doi:
– start-page: 41
  year: 2015
  end-page: 50
  ident: bib0002
  article-title: Building the dresden web table corpus: A classification approach
  publication-title: Proc. IEEE/ACM 2nd Int. Symposium on Big Data Computing
– start-page: 77
  year: 2016
  end-page: 88
  ident: bib0030
  article-title: A machine learning approach for layout inference in spreadsheets
  publication-title: Proc. 8th Int. Joint Conf. Knowledge Discovery, Knowledge Engineering and Knowledge Management
– start-page: 1126
  year: 2014
  end-page: 1135
  ident: bib0016
  article-title: Integrating spreadsheet data via accurate and low-effort extraction
  publication-title: Proc. 20th ACM SIGKDD Int. Conf. Knowledge Discovery and Data Mining
– volume: 103
  start-page: 63
  year: 2017
  end-page: 76
  ident: bib0061
  article-title: Combining information on structure and content to automatically annotate natural science spreadsheets
  publication-title: Int. J. Hum. Comput. Stud.
– volume: 6
  start-page: 421
  year: 2013
  end-page: 432
  ident: bib0024
  article-title: Schema extraction for tabular data on the web
  publication-title: Proc. VLDB Endow.
– volume: 50
  start-page: 218
  year: 2015
  end-page: 228
  ident: bib0058
  article-title: FlashRelate: extracting relational data from semi-structured spreadsheets using examples
  publication-title: SIGPLAN Not.
– start-page: 78
  year: 2016
  end-page: 91
  ident: bib0012
  article-title: Rule-based canonicalization of arbitrary tables in spreadsheets
  publication-title: Proc. 22nd Int. Conf. Information and Software Technologies
– reference: M.J. O’Connor, C. Halaschek-Wiener, M.A. Musen, Mapping Master: A Flexible Approach for Mapping Spreadsheets to OWL, 194–208. 10.1007/978-3-642-17749-1_13.
– year: 2016
  ident: bib0029
  article-title: Extraction algorithms for hierarchical header structures from spreadsheets
  publication-title: Proc. Workshops of the EDBT/ICDT 2016 Joint Conference
– volume: 30
  start-page: 296
  year: 2008
  end-page: 308
  ident: bib0020
  article-title: Extracting logical structures from HTML tables
  publication-title: Comput. Stand. Interfaces
– start-page: 141
  year: 2012
  end-page: 155
  ident: bib0040
  article-title: Understanding tables on the web
  publication-title: Proc. 31st Int. Conf. Conceptual Modeling
– start-page: 27
  year: 2001
  end-page: 30
  ident: bib0008
  article-title: Layout and language: challenges for table understanding on the web
  publication-title: Proc. 1st Int. Workshop Web Document Analysis
– start-page: 1:1
  year: 2013
  end-page: 1:8
  ident: bib0005
  article-title: Automatic web spreadsheet data extraction
  publication-title: Proc. 3rd Int. Workshop Semantic Search Over the Web
– start-page: 1554
  year: 2012
  end-page: 1557
  ident: bib0011
  article-title: Learning the characteristics of critical cells from web tables
  publication-title: Proc. 21st Int. Conf. Pattern Recognition
– volume: 2: Short Papers
  start-page: 658
  year: 2013
  end-page: 664
  ident: bib0041
  article-title: Understanding tables in context using standard NLP toolkits
  publication-title: Proc. 51st Annual Meeting of the Association for Computational Linguistics
– volume: 42
  start-page: 929
  year: 2015
  end-page: 937
  ident: bib0063
  article-title: Table understanding using a rule engine
  publication-title: Expert Syst. Appl.
– year: 1996
  ident: bib0010
  publication-title: Tabular Abstraction, Editing, and Formatting
– volume: 23
  start-page: 361
  year: 2016
  end-page: 392
  ident: bib0054
  article-title: Model inference for spreadsheets
  publication-title: Autom Softw Eng
– start-page: 3363
  year: 2011
  end-page: 3372
  ident: bib0052
  article-title: Wrangler: interactive visual specification of data transformation scripts
  publication-title: Proc. SIGCHI Conf. Human Factors in Computing Systems
– volume: 19
  start-page: 119
  year: 2016
  end-page: 138
  ident: bib0015
  article-title: Converting heterogeneous statistical tables on the web to searchable databases
  publication-title: Int. J. Doc. Anal. Recognit.
– start-page: 5:1
  year: 2017
  end-page: 5:5
  ident: bib0062
  article-title: Extracting linked data from statistic spreadsheets
  publication-title: Proc. Int. Workshop Semantic Big Data
– start-page: 175
  year: 2015
  end-page: 186
  ident: bib0064
  article-title: Rule-based table analysis and interpretation
  publication-title: Proc. 21st Int. Conf. Information and Software Technologies
– volume: 68
  start-page: 683
  year: 2009
  end-page: 703
  ident: bib0021
  article-title: Automatic hidden-web table interpretation, conceptualization, and semantic annotation
  publication-title: Data Knowl. Eng.
– start-page: 683
  year: 2017
  end-page: 698
  ident: bib0056
  article-title: Foofah: transforming data by example
  publication-title: Proc. ACM Int. Conf. Management of Data
– volume: 8
  start-page: 261
  year: 2005
  end-page: 285
  ident: bib0034
  article-title: Towards ontology generation from tables
  publication-title: World Wide Web
– start-page: 48
  year: 2015
  end-page: 62
  ident: bib0049
  article-title: Identifying web tables: supporting a neglected type of content on the web
  publication-title: Proc. 6th Int. Conf. Knowledge Engineering and Semantic Web
– start-page: 545
  year: 2011
  end-page: 554
  ident: bib0004
  article-title: Web-scale table census and classification
  publication-title: Proc. 4th ACM Int. Conf. Web Search and Data Mining
– reference: G. Nagy, TANGO-DocLab web tables from international statistical sites (Troy_200), 1, ID: Troy_200_1, 2016,
– volume: 8
  start-page: 144
  year: 2006
  end-page: 171
  ident: bib0009
  article-title: Design of an end-to-end method to extract information from tables
  publication-title: Int. J. Doc. Anal. Recognit.
– reference: .
– start-page: 179
  year: 2009
  end-page: 188
  ident: bib0053
  article-title: From spreadsheets to relational databases and back
  publication-title: Proc. ACM SIGPLAN Workshop Partial Evaluation and Program Manipulation
– start-page: 1749
  year: 2011
  end-page: 1754
  ident: bib0057
  article-title: Spreadsheet-based complex data transformation
  publication-title: Proc. 20th ACM Int. Conf. Information and Knowledge Management
– start-page: 131
  year: 2015
  end-page: 140
  ident: bib0048
  article-title: Sheet2RDF: a flexible and dynamic spreadsheet import&lifting framework for RDF
  publication-title: Proc. 28th Int. Conf. Industrial, Engineering and Other Applications of Applied Intelligent Systems
– start-page: 175
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0064
  article-title: Rule-based table analysis and interpretation
– volume: 19
  start-page: 119
  issue: 2
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0015
  article-title: Converting heterogeneous statistical tables on the web to searchable databases
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-016-0259-1
– start-page: 119
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0066
  article-title: Configurable table structure recognition in untagged PDF documents
– start-page: 302
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0043
  article-title: Table topic models for hidden unit estimation
– volume: 54
  start-page: 3
  issue: 1
  year: 2005
  ident: 10.1016/j.is.2017.08.004_bib0033
  article-title: Automating the extraction of data from HTML tables with unknown structure
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2004.10.004
– start-page: 381
  year: 2001
  ident: 10.1016/j.is.2017.08.004_bib0051
  article-title: Potter’s wheel: an interactive data cleaning system
– start-page: 77
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0030
  article-title: A machine learning approach for layout inference in spreadsheets
– volume: 6
  start-page: 1202
  issue: 12
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0025
  article-title: Senbazuru: a prototype spreadsheet database management system
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536274.2536276
– ident: 10.1016/j.is.2017.08.004_bib0013
– volume: 1
  start-page: 538
  issue: 1
  year: 2008
  ident: 10.1016/j.is.2017.08.004_bib0001
  article-title: Webtables: exploring the power of tables on the web
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1453856.1453916
– start-page: 4065
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0032
  article-title: Table headers: an entrance to the data mine
– start-page: 3363
  year: 2011
  ident: 10.1016/j.is.2017.08.004_bib0052
  article-title: Wrangler: interactive visual specification of data transformation scripts
– start-page: 1126
  year: 2014
  ident: 10.1016/j.is.2017.08.004_bib0016
  article-title: Integrating spreadsheet data via accurate and low-effort extraction
– start-page: 179
  year: 2009
  ident: 10.1016/j.is.2017.08.004_bib0053
  article-title: From spreadsheets to relational databases and back
– ident: 10.1016/j.is.2017.08.004_bib0047
  doi: 10.1007/978-3-642-34213-4_2
– start-page: 75
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0003
  article-title: A large public corpus of web tables containing time and context metadata
– start-page: 533
  year: 2014
  ident: 10.1016/j.is.2017.08.004_bib0039
  article-title: Using linked data to mine RDF from wikipedia’s tables
– year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0017
– volume: 103
  start-page: 63
  year: 2017
  ident: 10.1016/j.is.2017.08.004_bib0061
  article-title: Combining information on structure and content to automatically annotate natural science spreadsheets
  publication-title: Int. J. Hum. Comput. Stud.
  doi: 10.1016/j.ijhcs.2017.02.006
– volume: 4
  start-page: 528
  issue: 9
  year: 2011
  ident: 10.1016/j.is.2017.08.004_bib0035
  article-title: Recovering semantics of tables on the web
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2002938.2002939
– volume: 46
  start-page: 317
  issue: 6
  year: 2011
  ident: 10.1016/j.is.2017.08.004_bib0059
  article-title: Spreadsheet table transformations from examples
  publication-title: SIGPLAN Not.
  doi: 10.1145/1993316.1993536
– start-page: 1:1
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0005
  article-title: Automatic web spreadsheet data extraction
– ident: 10.1016/j.is.2017.08.004_bib0045
  doi: 10.1007/978-3-642-04930-9_23
– volume: 3
  start-page: 1338
  issue: 1–2
  year: 2010
  ident: 10.1016/j.is.2017.08.004_bib0036
  article-title: Annotating and searching web tables using entities, types and relationships
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1920841.1921005
– volume: 30
  start-page: 296
  issue: 5
  year: 2008
  ident: 10.1016/j.is.2017.08.004_bib0020
  article-title: Extracting logical structures from HTML tables
  publication-title: Comput. Stand. Interfaces
  doi: 10.1016/j.csi.2007.08.006
– start-page: 5:1
  year: 2017
  ident: 10.1016/j.is.2017.08.004_bib0062
  article-title: Extracting linked data from statistic spreadsheets
– ident: 10.1016/j.is.2017.08.004_bib0044
  doi: 10.1007/978-3-540-88564-1_29
– volume: 6
  start-page: 1606
  issue: 13
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0038
  article-title: Scalable column concept determination for web tables using large knowledge bases
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536258.2536271
– volume: 2: Short Papers
  start-page: 658
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0041
  article-title: Understanding tables in context using standard NLP toolkits
– start-page: 882
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0023
  article-title: Finding critical cells in web tables with SRL: Trying to uncover the devil’s tease
– start-page: 2781
  year: 2014
  ident: 10.1016/j.is.2017.08.004_bib0026
  article-title: Transforming web tables to a relational database
– volume: 42
  start-page: 929
  issue: 2
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0063
  article-title: Table understanding using a rule engine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.08.045
– start-page: 48
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0049
  article-title: Identifying web tables: supporting a neglected type of content on the web
– start-page: 141
  year: 2012
  ident: 10.1016/j.is.2017.08.004_bib0040
  article-title: Understanding tables on the web
– volume: 42
  start-page: 28
  issue: 3
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0006
  article-title: Web table taxonomy and formalization
  publication-title: SIGMOD Rec.
  doi: 10.1145/2536669.2536674
– ident: 10.1016/j.is.2017.08.004_bib0028
  doi: 10.1007/978-3-319-32025-0_33
– volume: 18
  start-page: 71
  issue: 1
  year: 2007
  ident: 10.1016/j.is.2017.08.004_bib0019
  article-title: UCHeck: a spreadsheet type checker for end users
  publication-title: J. Visual Lang. Comput.
  doi: 10.1016/j.jvlc.2006.06.001
– start-page: 683
  year: 2017
  ident: 10.1016/j.is.2017.08.004_bib0056
  article-title: Foofah: transforming data by example
– volume: 68
  start-page: 683
  issue: 7
  year: 2009
  ident: 10.1016/j.is.2017.08.004_bib0021
  article-title: Automatic hidden-web table interpretation, conceptualization, and semantic annotation
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2009.02.010
– start-page: 1554
  year: 2012
  ident: 10.1016/j.is.2017.08.004_bib0011
  article-title: Learning the characteristics of critical cells from web tables
– volume: 50
  start-page: 218
  issue: 6
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0058
  article-title: FlashRelate: extracting relational data from semi-structured spreadsheets using examples
  publication-title: SIGPLAN Not.
  doi: 10.1145/2813885.2737952
– volume: 23
  start-page: 361
  issue: 3
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0054
  article-title: Model inference for spreadsheets
  publication-title: Autom Softw Eng
  doi: 10.1007/s10515-014-0167-x
– start-page: 41
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0002
  article-title: Building the dresden web table corpus: A classification approach
– start-page: 78
  year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0012
  article-title: Rule-based canonicalization of arbitrary tables in spreadsheets
– volume: 665
  start-page: 109
  year: 2010
  ident: 10.1016/j.is.2017.08.004_bib0037
  article-title: Using linked data to interpret tables
– volume: 9402
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0031
  article-title: Clustering header categories extracted from web tables
  publication-title: Proc. SPIE
– year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0007
– start-page: 887
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0022
  article-title: Segmenting tables via indexing of value cells by table headers
– year: 1996
  ident: 10.1016/j.is.2017.08.004_bib0010
– volume: 60
  start-page: 567
  issue: 3
  year: 2007
  ident: 10.1016/j.is.2017.08.004_bib0018
  article-title: Transforming arbitrary tables into logical form with TARTAR
  publication-title: Data Knowl. Eng.
  doi: 10.1016/j.datak.2006.04.002
– volume: 8
  start-page: 144
  issue: 2
  year: 2006
  ident: 10.1016/j.is.2017.08.004_bib0009
  article-title: Design of an end-to-end method to extract information from tables
  publication-title: Int. J. Doc. Anal. Recognit.
  doi: 10.1007/s10032-005-0001-x
– start-page: 222
  year: 2014
  ident: 10.1016/j.is.2017.08.004_bib0027
  article-title: End-to-end conversion of HTML tables for populating a relational database
– volume: 6
  start-page: 421
  issue: 6
  year: 2013
  ident: 10.1016/j.is.2017.08.004_bib0024
  article-title: Schema extraction for tabular data on the web
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536336.2536343
– volume: 8
  start-page: 261
  issue: 3
  year: 2005
  ident: 10.1016/j.is.2017.08.004_bib0034
  article-title: Towards ontology generation from tables
  publication-title: World Wide Web
  doi: 10.1007/s11280-005-0360-8
– volume: 69
  start-page: 195
  year: 2017
  ident: 10.1016/j.is.2017.08.004_bib0065
  article-title: Semantic interoperability with heterogeneous information systems on the internet through automatic tabular document exchange
  publication-title: Inf. Syst.
  doi: 10.1016/j.is.2016.10.010
– ident: 10.1016/j.is.2017.08.004_bib0014
– ident: 10.1016/j.is.2017.08.004_bib0042
  doi: 10.1007/978-3-319-11964-9_31
– year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0029
  article-title: Extraction algorithms for hierarchical header structures from spreadsheets
– ident: 10.1016/j.is.2017.08.004_bib0046
  doi: 10.1007/978-3-642-17749-1_13
– year: 2016
  ident: 10.1016/j.is.2017.08.004_bib0060
  article-title: Spreadsheet Property Detection with Rule-assisted Active Learning
– start-page: 27
  year: 2001
  ident: 10.1016/j.is.2017.08.004_bib0008
  article-title: Layout and language: challenges for table understanding on the web
– start-page: 1749
  year: 2011
  ident: 10.1016/j.is.2017.08.004_bib0057
  article-title: Spreadsheet-based complex data transformation
– start-page: 545
  year: 2011
  ident: 10.1016/j.is.2017.08.004_bib0004
  article-title: Web-scale table census and classification
– ident: 10.1016/j.is.2017.08.004_bib0050
  doi: 10.1007/978-3-319-49004-5_11
– volume: 55
  start-page: 97
  issue: 8
  year: 2012
  ident: 10.1016/j.is.2017.08.004_bib0055
  article-title: Spreadsheet data manipulation using examples
  publication-title: Commun. ACM
  doi: 10.1145/2240236.2240260
– start-page: 131
  year: 2015
  ident: 10.1016/j.is.2017.08.004_bib0048
  article-title: Sheet2RDF: a flexible and dynamic spreadsheet import&lifting framework for RDF
SSID ssj0002599
Score 2.326682
Snippet •Spreadsheet data transformation can be considered as table understanding.•The two-layered table object model represents arbitrary spreadsheet tables.•Our...
The paper discusses issues of rule-based data transformation from arbitrary spreadsheet tables to a canonical (relational) form. We present a novel table...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 123
SubjectTerms Arbitrariness
Case studies
Cellular structure
Data
Information systems
Language shift
Performance evaluation
Rule-based programming
Semantics
Spreadsheet data transformation
Spreadsheets
Table analysis
Table interpretation
Table model
Table understanding
Transformation
Transformations
Websites
Title Rule-based spreadsheet data transformation from arbitrary to relational tables
URI https://dx.doi.org/10.1016/j.is.2017.08.004
https://www.proquest.com/docview/1966073797
Volume 71
WOSCitedRecordID wos000413385200011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6076
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002599
  issn: 0306-4379
  databaseCode: AIEXJ
  dateStart: 19950301
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZg4wEe-DFADAbyA0JCKCKJE7t-nFAnQFOHoJP6Zjm2SzOqtCTdNP577mInbUFU8MCLFSVxWvk-n8_nu_sIecksN7nl0ygxU4cblCSSYgqNYzotbK5zaVqyCTEaDSYT-Sm4spuWTkBU1eD6Wi7_q6jhHggbU2f_Qdz9R-EGXIPQoQWxQ_tXgv98OXcRLk72TbMEk9A2Mzx3xlBQJITozVQMMcTcEl0XZZt7j2ZoHWLjMAQdk6qaTeM1pC61XX0F6NZl63MON1wKX2blV10vrroEGlA7Z71gy28zXc7DQ4ym_BHcqcH1AMtZsuV66HNiOjW0DkRq87FiHmG1Q7_SePU6ECzisWd86fSvp2AJCjTx2ce_KXbvY7iAT2M4nmjLrnre4u0a2qMzdXJ-eqrGw8n41fJ7hPRieAwfuFZukv1U5BLU3_7xh-HkY79owy5Q-gMn_6fDibYPBdz-0T9ZML-s5a2BMr5P7oadBT32iHhAbrjqgNzrWDtoGL0DcmejBOVDMlrDhW7AhSJc6DZcKMKF9nChqwVdw4V6uDwi5yfD8bv3UeDYiAyo8lXk0kLnhmWZNIazWNpM2CwzsWEJc2AdZ3xgYi5hRqfGpgVPNDM6SXWqHZNcZuwx2asWlXtCKONMayGkxvpDhdWa5y51iZGFHWiexofkbTduyoQC9MiDMlddpOGFKhuFI62QGjXODsnrvsfSF1_Z8S7rRKGC8eiNQgUQ2tHrqJOaCnO4UQlWrBUAAvF09-Nn5PZ6WhyRvVV96Z6TW-ZqVTb1iwCxn8rpmJw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rule-based+spreadsheet+data+transformation+from+arbitrary+to+relational+tables&rft.jtitle=Information+systems+%28Oxford%29&rft.au=Shigarov%2C+Alexey+O&rft.au=Mikhailov%2C+Andrey+A&rft.date=2017-11-01&rft.pub=Elsevier+Science+Ltd&rft.issn=0306-4379&rft.eissn=1873-6076&rft.volume=71&rft.spage=123&rft_id=info:doi/10.1016%2Fj.is.2017.08.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-4379&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-4379&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-4379&client=summon