Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data
Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 11; číslo 3; s. 322 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.02.2022
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement of using the HAR to observe physical activity levels to assess physical and mental health. This study proposes an ensemble learning algorithm (ELA) to perform activity recognition using the signals recorded by smartphone sensors. The proposed ELA combines a gated recurrent unit (GRU), a convolutional neural network (CNN) stacked on the GRU and a deep neural network (DNN). The input samples of DNN were an extra feature vector consisting of 561 time-domain and frequency-domain parameters. The full connected DNN was used to fuse three models for the activity classification. The experimental results show that the precision, recall, F1-score and accuracy achieved by the ELA are 96.8%, 96.8%, 96.8%, and 96.7%, respectively, which are superior to the existing schemes. |
|---|---|
| AbstractList | Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement of using the HAR to observe physical activity levels to assess physical and mental health. This study proposes an ensemble learning algorithm (ELA) to perform activity recognition using the signals recorded by smartphone sensors. The proposed ELA combines a gated recurrent unit (GRU), a convolutional neural network (CNN) stacked on the GRU and a deep neural network (DNN). The input samples of DNN were an extra feature vector consisting of 561 time-domain and frequency-domain parameters. The full connected DNN was used to fuse three models for the activity classification. The experimental results show that the precision, recall, F1-score and accuracy achieved by the ELA are 96.8%, 96.8%, 96.8%, and 96.7%, respectively, which are superior to the existing schemes. |
| Author | Gochoo, Munkhjargal Liu, Shing-Hong Tan, Tan-Hsu Wu, Jie-Ying |
| Author_xml | – sequence: 1 givenname: Tan-Hsu surname: Tan fullname: Tan, Tan-Hsu – sequence: 2 givenname: Jie-Ying surname: Wu fullname: Wu, Jie-Ying – sequence: 3 givenname: Shing-Hong orcidid: 0000-0002-3923-4387 surname: Liu fullname: Liu, Shing-Hong – sequence: 4 givenname: Munkhjargal orcidid: 0000-0002-6613-7435 surname: Gochoo fullname: Gochoo, Munkhjargal |
| BookMark | eNp9UMFKAzEQDVLBWvsFXgKeVyfJdndzLLVaoSBYe_KwZNOkTdlNapIq_XtT6kFEnMPMMPPezONdop51ViF0TeCWMQ53qlUyemeNDIQAA0bpGepTKHnGKae9H_0FGoawhRScsIpBH73N9p2weCyj-TDxgF-UdGtronEWL4Oxa5y2UxtU17QKz5Xw9jgct2vnTdx0-DNlvOiEj7tN0oUXygbn8b2I4gqda9EGNfyuA7R8mL5OZtn8-fFpMp5nMkmNmSKSl0oLQXXVlCtNKznSogJZyKaBhAGdj4DpQpI0L3kSrwFyQoGoVU4IG6Cb092dd-97FWK9dXtv08uaFrTMixGraEKxE0p6F4JXut55k3QfagL10cj6DyMTi_9iSRPF0Z7ohWn_5X4BoRl_hQ |
| CitedBy_id | crossref_primary_10_3389_fpubh_2022_912099 crossref_primary_10_3390_s23177454 crossref_primary_10_3389_fdgth_2025_1511667 crossref_primary_10_1002_cpe_7142 crossref_primary_10_2196_47157 crossref_primary_10_1038_s41598_025_94689_5 crossref_primary_10_3390_biomimetics8070554 crossref_primary_10_3390_s24030735 crossref_primary_10_3390_s23031465 crossref_primary_10_1016_j_rineng_2025_105389 crossref_primary_10_1007_s13748_025_00381_0 crossref_primary_10_3390_electronics14163326 crossref_primary_10_1016_j_neunet_2024_106159 crossref_primary_10_1109_JSEN_2025_3549881 crossref_primary_10_1016_j_pce_2025_104078 crossref_primary_10_1177_01445987251365291 crossref_primary_10_3390_s23094319 crossref_primary_10_1049_cps2_12045 crossref_primary_10_1155_2022_9540033 crossref_primary_10_32604_cmc_2023_033045 crossref_primary_10_3390_electronics12071622 crossref_primary_10_3390_s24092665 crossref_primary_10_1080_10447318_2024_2443269 crossref_primary_10_1145_3596234 crossref_primary_10_3390_s22208060 crossref_primary_10_57197_JDR_2024_0006 crossref_primary_10_1016_j_jocs_2024_102377 crossref_primary_10_1109_ACCESS_2024_3484955 crossref_primary_10_3390_s23063354 crossref_primary_10_32604_cmc_2024_058193 crossref_primary_10_3390_s24216841 crossref_primary_10_1109_ACCESS_2022_3181605 crossref_primary_10_3390_s24103032 crossref_primary_10_1109_JSEN_2023_3256000 crossref_primary_10_3390_s23135845 crossref_primary_10_1109_TII_2022_3229522 crossref_primary_10_1109_TIM_2023_3253895 crossref_primary_10_3390_computers12070141 crossref_primary_10_1109_ACCESS_2024_3524431 crossref_primary_10_3390_s23052593 crossref_primary_10_1016_j_eswa_2024_123143 |
| Cites_doi | 10.3390/app8071152 10.1080/095400996116802 10.3390/su12219072 10.1097/HCR.0b013e31818c3b83 10.1109/ACCESS.2020.2982225 10.1007/3-540-45014-9_2 10.1109/ICSP.2016.7877972 10.1561/2200000006 10.1109/ICAEE48663.2019.8975649 10.1089/tmj.2009.0032 10.1109/ICAwST.2019.8923334 10.1016/S0140-6736(12)61031-9 10.1080/03093640600983949 10.1016/j.neunet.2019.04.014 10.1155/2016/6212684 10.1145/2499621 10.1109/ACCESS.2018.2876890 10.1109/WCSP.2018.8555945 10.1613/jair.614 10.1109/PDCAT46702.2019.00055 10.1109/JSEN.2018.2885796 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00190 10.1016/0893-6080(94)90099-X 10.1109/JSEN.2019.2956901 10.1109/SENSORS43011.2019.8956951 10.1007/BF00117832 10.23919/ChiCC.2019.8865142 10.3390/s21093112 10.1016/S0893-6080(96)00098-6 10.3390/su12145708 10.1016/j.neucom.2018.11.109 10.1109/JSEN.2019.2917225 10.1016/j.ins.2021.04.053 10.1109/CVPR.2015.7299176 10.1007/s10618-020-00710-y 10.3109/08039488.2012.675588 10.1109/TSMCC.2012.2198883 10.1016/S0893-6080(05)80023-1 10.21437/Interspeech.2014-433 10.1109/TPAMI.2005.109 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/electronics11030322 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Coronavirus Research Database ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics11030322 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC COVID DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c322t-e1c97efaa2f8b7df28c5fa80c6cbb0c320f4503f6c15fa79009f0041201ed4113 |
| IEDL.DBID | PIMPY |
| ISICitedReferencesCount | 48 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sat Jul 26 00:30:12 EDT 2025 Sat Nov 29 07:08:54 EST 2025 Tue Nov 18 21:02:51 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-e1c97efaa2f8b7df28c5fa80c6cbb0c320f4503f6c15fa79009f0041201ed4113 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3923-4387 0000-0002-6613-7435 |
| OpenAccessLink | https://www.proquest.com/publiccontent/docview/2627465382?pq-origsite=%requestingapplication% |
| PQID | 2627465382 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2627465382 crossref_primary_10_3390_electronics11030322 crossref_citationtrail_10_3390_electronics11030322 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Lee (ref_1) 2012; 380 ref_14 ref_36 ref_13 ref_35 Xiao (ref_27) 2021; 571 Wang (ref_18) 2019; 19 Fumera (ref_43) 2005; 9 Chen (ref_8) 2012; 42 ref_10 Nyboe (ref_4) 2013; 67 Breiman (ref_31) 1996; 24 Wong (ref_12) 2007; 31 Jin (ref_41) 2016; 2016 Bengio (ref_42) 2009; 2 Opitz (ref_33) 1996; 8 ref_17 ref_39 ref_16 ref_38 ref_15 ref_37 Wolpert (ref_32) 1992; 5 Rogova (ref_44) 1994; 7 Fawaz (ref_25) 2020; 34 Hashem (ref_34) 1997; 10 Liu (ref_7) 2009; 15 He (ref_19) 2019; 19 Bulling (ref_6) 2014; 46 Xia (ref_21) 2020; 8 ref_24 ref_23 Batchuluun (ref_29) 2018; 6 Opitz (ref_46) 1999; 11 ref_22 ref_20 Du (ref_30) 2020; 396 ref_40 ref_3 Karim (ref_26) 2019; 116 ref_2 Tufek (ref_11) 2020; 20 ref_28 Duin (ref_45) 2000; Volume 1857 ref_9 Oliveira (ref_5) 2008; 28 |
| References_xml | – ident: ref_28 doi: 10.3390/app8071152 – volume: 8 start-page: 337 year: 1996 ident: ref_33 article-title: Actively searching for an effective neural-network ensemble publication-title: Connect. Sci. doi: 10.1080/095400996116802 – ident: ref_3 doi: 10.3390/su12219072 – volume: 28 start-page: 392 year: 2008 ident: ref_5 article-title: Effects of a home-based cardiac rehabilitation program on the physical activity levels of patients with coronary artery disease publication-title: J. Cardiopulm. Rehabil. Prev. doi: 10.1097/HCR.0b013e31818c3b83 – volume: 8 start-page: 56855 year: 2020 ident: ref_21 article-title: LSTM-CNN architecture for human activity recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2982225 – volume: Volume 1857 start-page: 16 year: 2000 ident: ref_45 article-title: Experiments with classifier combining rules publication-title: Multiple Classifier Systems doi: 10.1007/3-540-45014-9_2 – ident: ref_15 doi: 10.1109/ICSP.2016.7877972 – volume: 2 start-page: 1 year: 2009 ident: ref_42 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – ident: ref_23 doi: 10.1109/ICAEE48663.2019.8975649 – volume: 15 start-page: 867 year: 2009 ident: ref_7 article-title: Using accelerometers for physical actions recognition by a neural fuzzy network publication-title: Telemed. e-Health doi: 10.1089/tmj.2009.0032 – ident: ref_24 doi: 10.1109/ICAwST.2019.8923334 – volume: 380 start-page: 219 year: 2012 ident: ref_1 article-title: Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy publication-title: Lancet doi: 10.1016/S0140-6736(12)61031-9 – ident: ref_39 – ident: ref_40 – volume: 31 start-page: 62 year: 2007 ident: ref_12 article-title: Clinical applications of sensors for human posture and movement analysis: A review publication-title: Prosthet. Orthot. Int. doi: 10.1080/03093640600983949 – volume: 116 start-page: 237 year: 2019 ident: ref_26 article-title: Multivariate LSTM-FCNs for time series classification publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.04.014 – ident: ref_37 – volume: 2016 start-page: 6212684 year: 2016 ident: ref_41 article-title: Ensemble deep learning for Biomedical Time Series Classification publication-title: Comput. Intell. Neurosci. doi: 10.1155/2016/6212684 – volume: 46 start-page: 33 year: 2014 ident: ref_6 article-title: A tutorial on human activity recognition using body-worn inertial sensors publication-title: ACM Comput. Surv. doi: 10.1145/2499621 – volume: 6 start-page: 63164 year: 2018 ident: ref_29 article-title: Gait-based human identification by combining shallow convolutional neural network-stacked long short-term memory and deep convolutional neural network publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2876890 – ident: ref_22 doi: 10.1109/WCSP.2018.8555945 – volume: 11 start-page: 169 year: 1999 ident: ref_46 article-title: Popular ensemble methods: An empirical study publication-title: J. Artif. Intell. Res. doi: 10.1613/jair.614 – ident: ref_20 doi: 10.1109/PDCAT46702.2019.00055 – volume: 19 start-page: 2287 year: 2019 ident: ref_19 article-title: Weakly supervised human activity recognition from wearable sensors by recurrent attention learning publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2018.2885796 – ident: ref_16 doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00190 – volume: 7 start-page: 777 year: 1994 ident: ref_44 article-title: Combining the results of several neural network classifiers publication-title: Neural Netw. doi: 10.1016/0893-6080(94)90099-X – volume: 20 start-page: 3101 year: 2020 ident: ref_11 article-title: Human action recognition using deep learning methods on limited sensory data publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2956901 – ident: ref_14 doi: 10.1109/SENSORS43011.2019.8956951 – volume: 24 start-page: 49 year: 1996 ident: ref_31 article-title: Stacking publication-title: Mach. Learn. doi: 10.1007/BF00117832 – ident: ref_17 doi: 10.23919/ChiCC.2019.8865142 – ident: ref_9 doi: 10.3390/s21093112 – volume: 10 start-page: 599 year: 1997 ident: ref_34 article-title: Optimal linear combinations of neural networks publication-title: Neural Netw. doi: 10.1016/S0893-6080(96)00098-6 – ident: ref_2 doi: 10.3390/su12145708 – volume: 396 start-page: 451 year: 2020 ident: ref_30 article-title: Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.11.109 – volume: 19 start-page: 7598 year: 2019 ident: ref_18 article-title: Attention-based convolutional neural network for weakly labeled human activities’ recognition with wearable sensors publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2917225 – ident: ref_13 – volume: 571 start-page: 65 year: 2021 ident: ref_27 article-title: RTFN: A robust temporal feature network for time series classification publication-title: Inf. Sci. doi: 10.1016/j.ins.2021.04.053 – ident: ref_38 – ident: ref_10 doi: 10.1109/CVPR.2015.7299176 – ident: ref_36 – volume: 34 start-page: 1936 year: 2020 ident: ref_25 article-title: InceptionTime: Finding AlexNet for Time Series Classication publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-020-00710-y – volume: 67 start-page: 43 year: 2013 ident: ref_4 article-title: Low levels of physical activity in patients with severe mental illness publication-title: Nord. J. Psychiatry doi: 10.3109/08039488.2012.675588 – volume: 42 start-page: 790 year: 2012 ident: ref_8 article-title: Sensor-based activity recognition publication-title: IEEE Trans. Syst. Man. Cybern. C doi: 10.1109/TSMCC.2012.2198883 – volume: 5 start-page: 241 year: 1992 ident: ref_32 article-title: Stacked generalization publication-title: Neural Netw. doi: 10.1016/S0893-6080(05)80023-1 – ident: ref_35 doi: 10.21437/Interspeech.2014-433 – volume: 9 start-page: 942 year: 2005 ident: ref_43 article-title: A theoretical and experimental analysis of linear combiners for multiple classifier systems publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.109 |
| SSID | ssj0000913830 |
| Score | 2.4223225 |
| Snippet | Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 322 |
| SubjectTerms | Algorithms Artificial neural networks COVID-19 Ensemble learning Human activity recognition Machine learning Mental health Moving object recognition Neural networks Sensors Smartphones Viral diseases Viruses |
| Title | Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data |
| URI | https://www.proquest.com/docview/2627465382 |
| Volume | 11 |
| WOSCitedRecordID | wos000920512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE) customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BywEO7IiyVD5wJKrtpFlOqEARSFBFbCpwiBwvBakbTeDIt2MnLlAJceKSQ-zI0Yw9zkye3wM4CLgnRROnTsTSwPEiFjmRJ13HF8qnAeHYK9j57y-DTifsdqPYHo_OLKxyGhOLQF2yPRvctg7CDTHipmLeoEYyxteLlR6NXx2jIWX-tVpBjXmoGuItXIFqfHEVP3zVXAwHZujiknzI1dl-41trJiNGcMuldHaDmo3PxaZztvK_r7sKy_bjE7XK2bIGc3K4Dks_KAk34Kmo6qMWL1Ul0PUUYDQaogJegHRre5jJQdqXyLKz9lCr39Pj5c8DZAq76GagZ6RBvUt0o_Pk0QSdspxtwt1Z-_bk3LECDA7XhsgdSXgUSMUYVWEaCEVD3lQsxNznaYp1H6y8JnaVz4m-H0TawKog8MJECo8QdwsqQz3UNiDJvUBhISKmPcN1Tk48noYMC04ECQWtAZ1aPeGWndyIZPQTnaUYVyW_uKoGh18PjUtyjr-77019ldiVmiXfrtn5u3kXFqk5-lAgtvegkk_e5D4s8Pf8JZvUoXrc7sTXdZi_-mjra9x8rNvp9wmpz-xz |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7q2kmDB2AMtEIBP4w3otqOm8QPCFW01ap2VbUNVLSHzPFlTOplNAHEn-I3YufSMQntrQ-8xk4i25_PsY-Pvw_gKJRMqw5OPC6S0GNccI8z7XuBMgENicQsZ-f_PA4nk2g249Ma_K7uwri0ysom5oZaraSLkbepE4kJ7PSkH26-eU41yp2uVhIaBSxG-tdPu2VL3w97dnzfUjron3889kpVAU9a8GaeJpKH2ghBTZSEytBIdoyIsAxkkmBbBxvWwb4JJLHPQ24XISZnpcJEK0aIb7-7Aw1mwY7r0JgOT6ZfNlEdx7IZ-bigN_J9jtu3ajYpcZJePqV3XeBdD5C7tcHj_61DnsCjcgGNugXi96Gml0_h4V-0igdwkZ9MoK4slDHQaZUktVqiPEUC2dL-MtWLZK5RyTB7hbrzK9u-7OsCueA0OlvYWeUy9zU6s3v91Rr1RCaewaettO451Jf2V4eAtGShwUpx0WFMsoATJpNIYCWJIpGiTaDVuMayZFh3Qh_z2O60HBjif4ChCe82L90UBCP3V29VaIhLa5PGt1B4cX_xG9g7Pj8Zx-PhZPQSHlB3lSPPQG9BPVt_169gV_7IrtP16xLYCC63DZ0_liU6lg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD5iZZrGA7CbgMHmB_ZGVNtx4_gBTd3aaghUVTAmpD1kji8FqU2hCaD9tf067Fy4SIg3HvYaO4lsf-fYPj7-PoBtrpjRHZwGQqY8YEKKQDATBpG2EeVEYVay8_864MNhfHIiRgvwr7kL49MqG59YOmo9Uz5G3qZeJCZy5knbtk6LGPUGX88vAq8g5U9aGzmNCiL75u-1277lu3s9N9ZfKB30f37_EdQKA4FyQC4CQ5TgxkpJbZxybWmsOlbGWEUqTbGrgy3r4NBGirjnXLgFiS0ZqjAxmhESuu--gEUeuk1PCxa_9Yejw9sIj2fcjENcUR2FocDtO2WbnHh5r5DSh9Phw9mgnOIGK_9z56zCcr2wRt3KEt7AgsnewtI9usV38Ls8sUBdVSlmoMMmeWqWoTJ1ArnSfpabaToxqGaeHaPuZOzaV5xOkQ9ao6Opszaf0W_Qkcny2Rz1ZCHfw_GztO4DtDL3qzVARjFusdZCdhhTLBKEqTSWWCuiSazpOtBmjBNVM697AZBJ4nZgHhjJI8BYh53bl84r4pGnq282yEhqL5Qnd7DYeLr4M7xyeEkO9ob7H-E19Tc8ysT0TWgV80uzBS_VVXGWzz_VGEfw57mRcwOKrkMw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Recognition+Using+an+Ensemble+Learning+Algorithm+with+Smartphone+Sensor+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Tan%2C+Tan-Hsu&rft.au=Wu%2C+Jie-Ying&rft.au=Liu%2C+Shing-Hong&rft.au=Gochoo%2C+Munkhjargal&rft.date=2022-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=3&rft.spage=322&rft_id=info:doi/10.3390%2Felectronics11030322&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11030322 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |