Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data

Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Electronics (Basel) Ročník 11; číslo 3; s. 322
Hlavní autori: Tan, Tan-Hsu, Wu, Jie-Ying, Liu, Shing-Hong, Gochoo, Munkhjargal
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.02.2022
Predmet:
ISSN:2079-9292, 2079-9292
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement of using the HAR to observe physical activity levels to assess physical and mental health. This study proposes an ensemble learning algorithm (ELA) to perform activity recognition using the signals recorded by smartphone sensors. The proposed ELA combines a gated recurrent unit (GRU), a convolutional neural network (CNN) stacked on the GRU and a deep neural network (DNN). The input samples of DNN were an extra feature vector consisting of 561 time-domain and frequency-domain parameters. The full connected DNN was used to fuse three models for the activity classification. The experimental results show that the precision, recall, F1-score and accuracy achieved by the ELA are 96.8%, 96.8%, 96.8%, and 96.7%, respectively, which are superior to the existing schemes.
AbstractList Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement of using the HAR to observe physical activity levels to assess physical and mental health. This study proposes an ensemble learning algorithm (ELA) to perform activity recognition using the signals recorded by smartphone sensors. The proposed ELA combines a gated recurrent unit (GRU), a convolutional neural network (CNN) stacked on the GRU and a deep neural network (DNN). The input samples of DNN were an extra feature vector consisting of 561 time-domain and frequency-domain parameters. The full connected DNN was used to fuse three models for the activity classification. The experimental results show that the precision, recall, F1-score and accuracy achieved by the ELA are 96.8%, 96.8%, 96.8%, and 96.7%, respectively, which are superior to the existing schemes.
Author Gochoo, Munkhjargal
Liu, Shing-Hong
Tan, Tan-Hsu
Wu, Jie-Ying
Author_xml – sequence: 1
  givenname: Tan-Hsu
  surname: Tan
  fullname: Tan, Tan-Hsu
– sequence: 2
  givenname: Jie-Ying
  surname: Wu
  fullname: Wu, Jie-Ying
– sequence: 3
  givenname: Shing-Hong
  orcidid: 0000-0002-3923-4387
  surname: Liu
  fullname: Liu, Shing-Hong
– sequence: 4
  givenname: Munkhjargal
  orcidid: 0000-0002-6613-7435
  surname: Gochoo
  fullname: Gochoo, Munkhjargal
BookMark eNp9UMFKAzEQDVLBWvsFXgKeVyfJdndzLLVaoSBYe_KwZNOkTdlNapIq_XtT6kFEnMPMMPPezONdop51ViF0TeCWMQ53qlUyemeNDIQAA0bpGepTKHnGKae9H_0FGoawhRScsIpBH73N9p2weCyj-TDxgF-UdGtronEWL4Oxa5y2UxtU17QKz5Xw9jgct2vnTdx0-DNlvOiEj7tN0oUXygbn8b2I4gqda9EGNfyuA7R8mL5OZtn8-fFpMp5nMkmNmSKSl0oLQXXVlCtNKznSogJZyKaBhAGdj4DpQpI0L3kSrwFyQoGoVU4IG6Cb092dd-97FWK9dXtv08uaFrTMixGraEKxE0p6F4JXut55k3QfagL10cj6DyMTi_9iSRPF0Z7ohWn_5X4BoRl_hQ
CitedBy_id crossref_primary_10_3389_fpubh_2022_912099
crossref_primary_10_3390_s23177454
crossref_primary_10_3389_fdgth_2025_1511667
crossref_primary_10_1002_cpe_7142
crossref_primary_10_2196_47157
crossref_primary_10_1038_s41598_025_94689_5
crossref_primary_10_3390_biomimetics8070554
crossref_primary_10_3390_s24030735
crossref_primary_10_3390_s23031465
crossref_primary_10_1016_j_rineng_2025_105389
crossref_primary_10_1007_s13748_025_00381_0
crossref_primary_10_3390_electronics14163326
crossref_primary_10_1016_j_neunet_2024_106159
crossref_primary_10_1109_JSEN_2025_3549881
crossref_primary_10_1016_j_pce_2025_104078
crossref_primary_10_1177_01445987251365291
crossref_primary_10_3390_s23094319
crossref_primary_10_1049_cps2_12045
crossref_primary_10_1155_2022_9540033
crossref_primary_10_32604_cmc_2023_033045
crossref_primary_10_3390_electronics12071622
crossref_primary_10_3390_s24092665
crossref_primary_10_1080_10447318_2024_2443269
crossref_primary_10_1145_3596234
crossref_primary_10_3390_s22208060
crossref_primary_10_57197_JDR_2024_0006
crossref_primary_10_1016_j_jocs_2024_102377
crossref_primary_10_1109_ACCESS_2024_3484955
crossref_primary_10_3390_s23063354
crossref_primary_10_32604_cmc_2024_058193
crossref_primary_10_3390_s24216841
crossref_primary_10_1109_ACCESS_2022_3181605
crossref_primary_10_3390_s24103032
crossref_primary_10_1109_JSEN_2023_3256000
crossref_primary_10_3390_s23135845
crossref_primary_10_1109_TII_2022_3229522
crossref_primary_10_1109_TIM_2023_3253895
crossref_primary_10_3390_computers12070141
crossref_primary_10_1109_ACCESS_2024_3524431
crossref_primary_10_3390_s23052593
crossref_primary_10_1016_j_eswa_2024_123143
Cites_doi 10.3390/app8071152
10.1080/095400996116802
10.3390/su12219072
10.1097/HCR.0b013e31818c3b83
10.1109/ACCESS.2020.2982225
10.1007/3-540-45014-9_2
10.1109/ICSP.2016.7877972
10.1561/2200000006
10.1109/ICAEE48663.2019.8975649
10.1089/tmj.2009.0032
10.1109/ICAwST.2019.8923334
10.1016/S0140-6736(12)61031-9
10.1080/03093640600983949
10.1016/j.neunet.2019.04.014
10.1155/2016/6212684
10.1145/2499621
10.1109/ACCESS.2018.2876890
10.1109/WCSP.2018.8555945
10.1613/jair.614
10.1109/PDCAT46702.2019.00055
10.1109/JSEN.2018.2885796
10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00190
10.1016/0893-6080(94)90099-X
10.1109/JSEN.2019.2956901
10.1109/SENSORS43011.2019.8956951
10.1007/BF00117832
10.23919/ChiCC.2019.8865142
10.3390/s21093112
10.1016/S0893-6080(96)00098-6
10.3390/su12145708
10.1016/j.neucom.2018.11.109
10.1109/JSEN.2019.2917225
10.1016/j.ins.2021.04.053
10.1109/CVPR.2015.7299176
10.1007/s10618-020-00710-y
10.3109/08039488.2012.675588
10.1109/TSMCC.2012.2198883
10.1016/S0893-6080(05)80023-1
10.21437/Interspeech.2014-433
10.1109/TPAMI.2005.109
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
DOI 10.3390/electronics11030322
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Coronavirus Research Database
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics11030322
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
COVID
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c322t-e1c97efaa2f8b7df28c5fa80c6cbb0c320f4503f6c15fa79009f0041201ed4113
IEDL.DBID PIMPY
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000920512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sat Jul 26 00:30:12 EDT 2025
Sat Nov 29 07:08:54 EST 2025
Tue Nov 18 21:02:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-e1c97efaa2f8b7df28c5fa80c6cbb0c320f4503f6c15fa79009f0041201ed4113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3923-4387
0000-0002-6613-7435
OpenAccessLink https://www.proquest.com/publiccontent/docview/2627465382?pq-origsite=%requestingapplication%
PQID 2627465382
PQPubID 2032404
ParticipantIDs proquest_journals_2627465382
crossref_primary_10_3390_electronics11030322
crossref_citationtrail_10_3390_electronics11030322
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lee (ref_1) 2012; 380
ref_14
ref_36
ref_13
ref_35
Xiao (ref_27) 2021; 571
Wang (ref_18) 2019; 19
Fumera (ref_43) 2005; 9
Chen (ref_8) 2012; 42
ref_10
Nyboe (ref_4) 2013; 67
Breiman (ref_31) 1996; 24
Wong (ref_12) 2007; 31
Jin (ref_41) 2016; 2016
Bengio (ref_42) 2009; 2
Opitz (ref_33) 1996; 8
ref_17
ref_39
ref_16
ref_38
ref_15
ref_37
Wolpert (ref_32) 1992; 5
Rogova (ref_44) 1994; 7
Fawaz (ref_25) 2020; 34
Hashem (ref_34) 1997; 10
Liu (ref_7) 2009; 15
He (ref_19) 2019; 19
Bulling (ref_6) 2014; 46
Xia (ref_21) 2020; 8
ref_24
ref_23
Batchuluun (ref_29) 2018; 6
Opitz (ref_46) 1999; 11
ref_22
ref_20
Du (ref_30) 2020; 396
ref_40
ref_3
Karim (ref_26) 2019; 116
ref_2
Tufek (ref_11) 2020; 20
ref_28
Duin (ref_45) 2000; Volume 1857
ref_9
Oliveira (ref_5) 2008; 28
References_xml – ident: ref_28
  doi: 10.3390/app8071152
– volume: 8
  start-page: 337
  year: 1996
  ident: ref_33
  article-title: Actively searching for an effective neural-network ensemble
  publication-title: Connect. Sci.
  doi: 10.1080/095400996116802
– ident: ref_3
  doi: 10.3390/su12219072
– volume: 28
  start-page: 392
  year: 2008
  ident: ref_5
  article-title: Effects of a home-based cardiac rehabilitation program on the physical activity levels of patients with coronary artery disease
  publication-title: J. Cardiopulm. Rehabil. Prev.
  doi: 10.1097/HCR.0b013e31818c3b83
– volume: 8
  start-page: 56855
  year: 2020
  ident: ref_21
  article-title: LSTM-CNN architecture for human activity recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2982225
– volume: Volume 1857
  start-page: 16
  year: 2000
  ident: ref_45
  article-title: Experiments with classifier combining rules
  publication-title: Multiple Classifier Systems
  doi: 10.1007/3-540-45014-9_2
– ident: ref_15
  doi: 10.1109/ICSP.2016.7877972
– volume: 2
  start-page: 1
  year: 2009
  ident: ref_42
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– ident: ref_23
  doi: 10.1109/ICAEE48663.2019.8975649
– volume: 15
  start-page: 867
  year: 2009
  ident: ref_7
  article-title: Using accelerometers for physical actions recognition by a neural fuzzy network
  publication-title: Telemed. e-Health
  doi: 10.1089/tmj.2009.0032
– ident: ref_24
  doi: 10.1109/ICAwST.2019.8923334
– volume: 380
  start-page: 219
  year: 2012
  ident: ref_1
  article-title: Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy
  publication-title: Lancet
  doi: 10.1016/S0140-6736(12)61031-9
– ident: ref_39
– ident: ref_40
– volume: 31
  start-page: 62
  year: 2007
  ident: ref_12
  article-title: Clinical applications of sensors for human posture and movement analysis: A review
  publication-title: Prosthet. Orthot. Int.
  doi: 10.1080/03093640600983949
– volume: 116
  start-page: 237
  year: 2019
  ident: ref_26
  article-title: Multivariate LSTM-FCNs for time series classification
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.04.014
– ident: ref_37
– volume: 2016
  start-page: 6212684
  year: 2016
  ident: ref_41
  article-title: Ensemble deep learning for Biomedical Time Series Classification
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2016/6212684
– volume: 46
  start-page: 33
  year: 2014
  ident: ref_6
  article-title: A tutorial on human activity recognition using body-worn inertial sensors
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2499621
– volume: 6
  start-page: 63164
  year: 2018
  ident: ref_29
  article-title: Gait-based human identification by combining shallow convolutional neural network-stacked long short-term memory and deep convolutional neural network
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2876890
– ident: ref_22
  doi: 10.1109/WCSP.2018.8555945
– volume: 11
  start-page: 169
  year: 1999
  ident: ref_46
  article-title: Popular ensemble methods: An empirical study
  publication-title: J. Artif. Intell. Res.
  doi: 10.1613/jair.614
– ident: ref_20
  doi: 10.1109/PDCAT46702.2019.00055
– volume: 19
  start-page: 2287
  year: 2019
  ident: ref_19
  article-title: Weakly supervised human activity recognition from wearable sensors by recurrent attention learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2885796
– ident: ref_16
  doi: 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00190
– volume: 7
  start-page: 777
  year: 1994
  ident: ref_44
  article-title: Combining the results of several neural network classifiers
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(94)90099-X
– volume: 20
  start-page: 3101
  year: 2020
  ident: ref_11
  article-title: Human action recognition using deep learning methods on limited sensory data
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2956901
– ident: ref_14
  doi: 10.1109/SENSORS43011.2019.8956951
– volume: 24
  start-page: 49
  year: 1996
  ident: ref_31
  article-title: Stacking
  publication-title: Mach. Learn.
  doi: 10.1007/BF00117832
– ident: ref_17
  doi: 10.23919/ChiCC.2019.8865142
– ident: ref_9
  doi: 10.3390/s21093112
– volume: 10
  start-page: 599
  year: 1997
  ident: ref_34
  article-title: Optimal linear combinations of neural networks
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(96)00098-6
– ident: ref_2
  doi: 10.3390/su12145708
– volume: 396
  start-page: 451
  year: 2020
  ident: ref_30
  article-title: Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.11.109
– volume: 19
  start-page: 7598
  year: 2019
  ident: ref_18
  article-title: Attention-based convolutional neural network for weakly labeled human activities’ recognition with wearable sensors
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2917225
– ident: ref_13
– volume: 571
  start-page: 65
  year: 2021
  ident: ref_27
  article-title: RTFN: A robust temporal feature network for time series classification
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2021.04.053
– ident: ref_38
– ident: ref_10
  doi: 10.1109/CVPR.2015.7299176
– ident: ref_36
– volume: 34
  start-page: 1936
  year: 2020
  ident: ref_25
  article-title: InceptionTime: Finding AlexNet for Time Series Classication
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-020-00710-y
– volume: 67
  start-page: 43
  year: 2013
  ident: ref_4
  article-title: Low levels of physical activity in patients with severe mental illness
  publication-title: Nord. J. Psychiatry
  doi: 10.3109/08039488.2012.675588
– volume: 42
  start-page: 790
  year: 2012
  ident: ref_8
  article-title: Sensor-based activity recognition
  publication-title: IEEE Trans. Syst. Man. Cybern. C
  doi: 10.1109/TSMCC.2012.2198883
– volume: 5
  start-page: 241
  year: 1992
  ident: ref_32
  article-title: Stacked generalization
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(05)80023-1
– ident: ref_35
  doi: 10.21437/Interspeech.2014-433
– volume: 9
  start-page: 942
  year: 2005
  ident: ref_43
  article-title: A theoretical and experimental analysis of linear combiners for multiple classifier systems
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.109
SSID ssj0000913830
Score 2.4223225
Snippet Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 322
SubjectTerms Algorithms
Artificial neural networks
COVID-19
Ensemble learning
Human activity recognition
Machine learning
Mental health
Moving object recognition
Neural networks
Sensors
Smartphones
Viral diseases
Viruses
Title Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data
URI https://www.proquest.com/docview/2627465382
Volume 11
WOSCitedRecordID wos000920512400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Advanced Technologies & Aerospace Database (NC LIVE)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JTsMwEB1BywEO7IiyVD5wJKrtpFlOqEARSFBFbCpwiBwvBakbTeDIt2MnLlAJceKSQ-zI0Yw9zkye3wM4CLgnRROnTsTSwPEiFjmRJ13HF8qnAeHYK9j57y-DTifsdqPYHo_OLKxyGhOLQF2yPRvctg7CDTHipmLeoEYyxteLlR6NXx2jIWX-tVpBjXmoGuItXIFqfHEVP3zVXAwHZujiknzI1dl-41trJiNGcMuldHaDmo3PxaZztvK_r7sKy_bjE7XK2bIGc3K4Dks_KAk34Kmo6qMWL1Ul0PUUYDQaogJegHRre5jJQdqXyLKz9lCr39Pj5c8DZAq76GagZ6RBvUt0o_Pk0QSdspxtwt1Z-_bk3LECDA7XhsgdSXgUSMUYVWEaCEVD3lQsxNznaYp1H6y8JnaVz4m-H0TawKog8MJECo8QdwsqQz3UNiDJvUBhISKmPcN1Tk48noYMC04ECQWtAZ1aPeGWndyIZPQTnaUYVyW_uKoGh18PjUtyjr-77019ldiVmiXfrtn5u3kXFqk5-lAgtvegkk_e5D4s8Pf8JZvUoXrc7sTXdZi_-mjra9x8rNvp9wmpz-xz
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bb9MwFD7q2kmDB2AMtEIBP4w3otqOm8QPCFW01ap2VbUNVLSHzPFlTOplNAHEn-I3YufSMQntrQ-8xk4i25_PsY-Pvw_gKJRMqw5OPC6S0GNccI8z7XuBMgENicQsZ-f_PA4nk2g249Ma_K7uwri0ysom5oZaraSLkbepE4kJ7PSkH26-eU41yp2uVhIaBSxG-tdPu2VL3w97dnzfUjron3889kpVAU9a8GaeJpKH2ghBTZSEytBIdoyIsAxkkmBbBxvWwb4JJLHPQ24XISZnpcJEK0aIb7-7Aw1mwY7r0JgOT6ZfNlEdx7IZ-bigN_J9jtu3ajYpcZJePqV3XeBdD5C7tcHj_61DnsCjcgGNugXi96Gml0_h4V-0igdwkZ9MoK4slDHQaZUktVqiPEUC2dL-MtWLZK5RyTB7hbrzK9u-7OsCueA0OlvYWeUy9zU6s3v91Rr1RCaewaettO451Jf2V4eAtGShwUpx0WFMsoATJpNIYCWJIpGiTaDVuMayZFh3Qh_z2O60HBjif4ChCe82L90UBCP3V29VaIhLa5PGt1B4cX_xG9g7Pj8Zx-PhZPQSHlB3lSPPQG9BPVt_169gV_7IrtP16xLYCC63DZ0_liU6lg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1bT9swFD5iZZrGA7CbgMHmB_ZGVNtx4_gBTd3aaghUVTAmpD1kji8FqU2hCaD9tf067Fy4SIg3HvYaO4lsf-fYPj7-PoBtrpjRHZwGQqY8YEKKQDATBpG2EeVEYVay8_864MNhfHIiRgvwr7kL49MqG59YOmo9Uz5G3qZeJCZy5knbtk6LGPUGX88vAq8g5U9aGzmNCiL75u-1277lu3s9N9ZfKB30f37_EdQKA4FyQC4CQ5TgxkpJbZxybWmsOlbGWEUqTbGrgy3r4NBGirjnXLgFiS0ZqjAxmhESuu--gEUeuk1PCxa_9Yejw9sIj2fcjENcUR2FocDtO2WbnHh5r5DSh9Phw9mgnOIGK_9z56zCcr2wRt3KEt7AgsnewtI9usV38Ls8sUBdVSlmoMMmeWqWoTJ1ArnSfpabaToxqGaeHaPuZOzaV5xOkQ9ao6Opszaf0W_Qkcny2Rz1ZCHfw_GztO4DtDL3qzVARjFusdZCdhhTLBKEqTSWWCuiSazpOtBmjBNVM697AZBJ4nZgHhjJI8BYh53bl84r4pGnq282yEhqL5Qnd7DYeLr4M7xyeEkO9ob7H-E19Tc8ysT0TWgV80uzBS_VVXGWzz_VGEfw57mRcwOKrkMw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Human+Activity+Recognition+Using+an+Ensemble+Learning+Algorithm+with+Smartphone+Sensor+Data&rft.jtitle=Electronics+%28Basel%29&rft.au=Tan%2C+Tan-Hsu&rft.au=Wu%2C+Jie-Ying&rft.au=Liu%2C+Shing-Hong&rft.au=Gochoo%2C+Munkhjargal&rft.date=2022-02-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=11&rft.issue=3&rft.spage=322&rft_id=info:doi/10.3390%2Felectronics11030322&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics11030322
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon