A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification

The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clusteri...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on computational biology and bioinformatics Vol. 21; no. 6; pp. 2292 - 2303
Main Authors: Wang, Juan, Qiao, Tian-Jing, Zheng, Chun-Hou, Liu, Jin-Xing, Shang, Jun-Liang
Format: Journal Article
Language:English
Published: United States IEEE 01.11.2024
Subjects:
ISSN:1545-5963, 1557-9964, 1557-9964
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.
AbstractList The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.
The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.
Author Qiao, Tian-Jing
Zheng, Chun-Hou
Wang, Juan
Shang, Jun-Liang
Liu, Jin-Xing
Author_xml – sequence: 1
  givenname: Juan
  orcidid: 0000-0003-3934-0435
  surname: Wang
  fullname: Wang, Juan
  email: wangjuansdu@163.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 2
  givenname: Tian-Jing
  orcidid: 0000-0002-0619-1202
  surname: Qiao
  fullname: Qiao, Tian-Jing
  email: qiaotianjing@163.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 3
  givenname: Chun-Hou
  orcidid: 0000-0002-2695-1926
  surname: Zheng
  fullname: Zheng, Chun-Hou
  email: zhengch99@126.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 4
  givenname: Jin-Xing
  orcidid: 0000-0001-6104-2149
  surname: Liu
  fullname: Liu, Jin-Xing
  email: sdcavell@126.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
– sequence: 5
  givenname: Jun-Liang
  orcidid: 0000-0002-8488-2228
  surname: Shang
  fullname: Shang, Jun-Liang
  email: shangjunliang110@163.com
  organization: School of Computer Science, Qufu Normal University, Rizhao, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39264790$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9PGzEQxa2KqoG0H6BShXzksqn_7W58TCISoqZwID2vvPYsdbuxF3sXxLfHIaGqOHCad_i9mdF7Z-jEeQcIfaVkQimR37eL-XzCCBMTLnIpC_IBndI8L7OkxcleizzLZcFH6CzGPySRkohPaMQlK0QpySlyM3wNj3gVVPcbz4beg9PeQMjmKoLBP4e2t9kGHqDFPyC4NG6HOnZKA14O0XqHl0Ht4NGHv7jxAd9ad9dCtoC2xdunDvDagOttY7XqE_0ZfWxUG-HLcY7Rr-XldnGVbW5W68Vsk2nOWJ-ZWuRUT0nRSE5ZbagyYOS04DAFahiTjaFU10wxMtWlYLSkutSgNQHO64byMbo47O2Cvx8g9tXORp2eUg78ECtOiSApBcYTen5Eh3oHpuqC3anwVL1mlAB6AHTwMQZo_iGUVPseqn0P1b6H6thD8pRvPNr2Lwn0Qdn2Xee3g9MCwH-XilIWOePPs9eVJw
CODEN ITCBCY
CitedBy_id crossref_primary_10_1093_bib_bbaf378
Cites_doi 10.1016/j.cell.2016.01.047
10.1016/j.stem.2015.09.011
10.1093/bioinformatics/bty390
10.1093/bioinformatics/btab787
10.1038/s42256-019-0037-0
10.1038/nmeth.4236
10.1109/TNNLS.2022.3190289
10.1038/nn.3881
10.1109/TCYB.2022.3175771
10.1016/j.cell.2019.05.031
10.1038/nn.4216
10.1038/ni.3437
10.1109/JBHI.2021.3091506
10.1093/bib/bbab531
10.1093/bioinformatics/bty050
10.1093/bioinformatics/btac099
10.1093/bib/bbaa316
10.1038/nature13173
10.1126/science.1245316
10.1093/bioinformatics/btz139
10.1093/bioinformatics/btab276
10.1145/3132847.3132967
10.1109/TPAMI.2018.2794348
10.1016/0169-7439(87)80084-9
10.1109/JBHI.2020.2991172
10.1038/nmeth.4207
10.1038/s41467-022-30755-0
10.1016/j.jmva.2006.11.013
10.1007/s11222-007-9033-z
10.1109/TPAMI.2013.57
10.15252/embr.201540946
10.1093/bib/bby076
10.1109/ACCESS.2020.2988796
10.1093/bib/bbab236
10.1016/j.molcel.2015.04.005
10.1145/3366423.3380214
10.1016/j.neucom.2022.04.083
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TCBB.2024.3459960
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 2303
ExternalDocumentID 39264790
10_1109_TCBB_2024_3459960
10679652
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62172253; 62172254; 61972226
  funderid: 10.13039/501100001809
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-db451c806f9312bd1aded9863e8e1d229fd11cb2a208c742171c7cecc0e33bf13
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375732400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Thu Oct 02 10:47:47 EDT 2025
Wed Aug 06 16:36:17 EDT 2025
Sat Nov 29 01:52:07 EST 2025
Tue Nov 18 21:14:31 EST 2025
Wed Aug 27 02:33:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-db451c806f9312bd1aded9863e8e1d229fd11cb2a208c742171c7cecc0e33bf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-0619-1202
0000-0001-6104-2149
0000-0003-3934-0435
0000-0002-8488-2228
0000-0002-2695-1926
PMID 39264790
PQID 3104039223
PQPubID 23479
PageCount 12
ParticipantIDs pubmed_primary_39264790
proquest_miscellaneous_3104039223
crossref_primary_10_1109_TCBB_2024_3459960
ieee_primary_10679652
crossref_citationtrail_10_1109_TCBB_2024_3459960
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
Strehl (ref30) 2002; 3
ref24
ref23
ref26
ref25
ref20
Laurens (ref7) 2008; 9
ref22
ref21
ref28
ref27
ref29
ref9
ref4
ref3
ref6
ref5
ref40
McInnes (ref8) 2018
References_xml – ident: ref34
  doi: 10.1016/j.cell.2016.01.047
– ident: ref38
  doi: 10.1016/j.stem.2015.09.011
– volume: 3
  start-page: 583
  issue: 12
  year: 2002
  ident: ref30
  article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions
  publication-title: J. Mach. Learn. Res.
– ident: ref11
  doi: 10.1093/bioinformatics/bty390
– ident: ref10
  doi: 10.1093/bioinformatics/btab787
– ident: ref20
  doi: 10.1038/s42256-019-0037-0
– ident: ref17
  doi: 10.1038/nmeth.4236
– ident: ref24
  doi: 10.1109/TNNLS.2022.3190289
– year: 2018
  ident: ref8
  article-title: Umap: Uniform manifold approximation and projection for dimension reduction
– ident: ref37
  doi: 10.1038/nn.3881
– ident: ref27
  doi: 10.1109/TCYB.2022.3175771
– ident: ref18
  doi: 10.1016/j.cell.2019.05.031
– ident: ref39
  doi: 10.1038/nn.4216
– ident: ref36
  doi: 10.1038/ni.3437
– ident: ref9
  doi: 10.1109/JBHI.2021.3091506
– ident: ref3
  doi: 10.1093/bib/bbab531
– ident: ref15
  doi: 10.1093/bioinformatics/bty050
– ident: ref25
  doi: 10.1093/bioinformatics/btac099
– ident: ref21
  doi: 10.1093/bib/bbaa316
– ident: ref33
  doi: 10.1038/nature13173
– ident: ref35
  doi: 10.1126/science.1245316
– ident: ref12
  doi: 10.1093/bioinformatics/btz139
– ident: ref16
  doi: 10.1093/bioinformatics/btab276
– ident: ref23
  doi: 10.1145/3132847.3132967
– volume: 9
  start-page: 2579
  issue: 2605
  year: 2008
  ident: ref7
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref28
  doi: 10.1109/TPAMI.2018.2794348
– ident: ref6
  doi: 10.1016/0169-7439(87)80084-9
– ident: ref13
  doi: 10.1109/JBHI.2020.2991172
– ident: ref14
  doi: 10.1038/nmeth.4207
– ident: ref2
  doi: 10.1038/s41467-022-30755-0
– ident: ref31
  doi: 10.1016/j.jmva.2006.11.013
– ident: ref4
  doi: 10.1007/s11222-007-9033-z
– ident: ref26
  doi: 10.1109/TPAMI.2013.57
– ident: ref32
  doi: 10.15252/embr.201540946
– ident: ref40
  doi: 10.1093/bib/bby076
– ident: ref5
  doi: 10.1109/ACCESS.2020.2988796
– ident: ref19
  doi: 10.1093/bib/bbab236
– ident: ref1
  doi: 10.1016/j.molcel.2015.04.005
– ident: ref22
  doi: 10.1145/3366423.3380214
– ident: ref29
  doi: 10.1016/j.neucom.2022.04.083
SSID ssj0024904
Score 2.3830173
Snippet The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2292
SubjectTerms Accuracy
Adaptation models
Algorithms
Animals
Autoencoder
Cluster Analysis
Clustering methods
Computational Biology - methods
Consensus learning
Data models
Deep Learning
Feature extraction
graph autoencoder
Humans
Kernel
kernel self-expression model
multi-level kernel space fusion
multiple top fea-ture sets
RNA-Seq - methods
Sequence Analysis, RNA - methods
Sequential analysis
Single-Cell Analysis - methods
single-cell type identification
Title A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification
URI https://ieeexplore.ieee.org/document/10679652
https://www.ncbi.nlm.nih.gov/pubmed/39264790
https://www.proquest.com/docview/3104039223
Volume 21
WOSCitedRecordID wos001375732400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNaEMuSdOm7aZpUKGnghK9LEvH3SXbQkIoNC17M5Y0hsDiLZt1of8-I9mb5JJCTvZBso2_T_OSZoaQL95JD1pEJo3lTBe2Zh7teqZNNLbxroy5lNLvy_Lqys7n7seQrJ5zYQAgHz6D03Sb9_LjMnQpVHYmctSjQIm7VZamT9Z6KKzncq_AZBKwAmk1bGEK7s6up5MJuoJSnyqdy5Hskh20C4wukyh-pI9yg5Wnbc2sc2b7z_za12RvMC7puGfDAXkB7Rvyqm83-e8taccUZRr9lmpU03G3XqYilhFWbIKqLNKci8su0ykiegGrFi9JrKBTDXTWpaganW2OclG0delPVHsLYFNYLGjyZ2mf9dsMYcBD8mt2fj39zoZ-Cyzgsl6z6HUhguWmcUpIH0UdITprFFgQUUrXRCGCl7XkNqBLLUoRyoAc4KCUb4R6R7bbZQsfCDUxOiNC0ejgdM15LaJCt137GLkCrUaEb_56FYZi5KknxqLKTgl3VcKsSphVA2Yj8vV-yp--Esf_Bh8mQB4N7LEYkc8bbCtcR2lzpG5h2d1WaOZqjqSQ-G3ve9DvZ2-4cvTEUz-S3fTyPkXxmGyvVx18Ii_D3_XN7eoEyTq3J5msd8uM4qU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hUqAXyqNAeBqJE5Jbv_bhYxIRihoiJALqbbW2ZyWkaIPSLBL_nrF30_bSSpx2D_bK2m88883YMwPwwVnl0MjAVV4KbrKy5o54PTd5yMvG2SKkUko_58ViUZ6f229DsnrKhUHEdPkMj-NrOssPa9_FUNmJTFGPjDTu3dg6a0jXuiqtZ1O3wEgKeEaCNRxiSmFPltPJhJxBZY61SQVJDuA-MYPcFFEZX7NIqcXKzWwzWZ3Z4X-u9xE8HOglG_fy8BjuYPsE7vUNJ_8-hXbMSKuxz7FKNRt323UsYxlwwydkzAJL2bh8Hu8RsTPctPSIioXcamSzLsbV2Gx3mYsR22XfyfCtkE9xtWLRo2V93m8zBAKP4Mfs03J6yoeOC9zTxt7y4EwmfSnyxmqpXJB1wGDLXGOJMihlmyCld6pWovTkVMtC-sKTFAjU2jVSP4O9dt3iC2B5CDaXPmuMt6YWopZBk-NuXAhCo9EjELu_XvmhHHnsirGqklsibBUxqyJm1YDZCD5eTvnd1-K4bfBRBOTawB6LEbzfYVvRTorHI3WL6-6iIqJrBAmForU970G_nL2TlZc3fPUdPDhdfp1X8y-Ls1dwEBfSJyy-hr3tpsM3sO__bH9dbN4mkf0HavDlBg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Graph+Autoencoder-Based+Multi-Level+Kernel+Subspace+Fusion+Framework+for+Single-Cell+Type+Identification&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Wang%2C+Juan&rft.au=Qiao%2C+Tian-Jing&rft.au=Zheng%2C+Chun-Hou&rft.au=Liu%2C+Jin-Xing&rft.date=2024-11-01&rft.issn=1557-9964&rft.eissn=1557-9964&rft.volume=21&rft.issue=6&rft.spage=2292&rft_id=info:doi/10.1109%2FTCBB.2024.3459960&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon