A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification
The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clusteri...
Saved in:
| Published in: | IEEE/ACM transactions on computational biology and bioinformatics Vol. 21; no. 6; pp. 2292 - 2303 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
United States
IEEE
01.11.2024
|
| Subjects: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods. |
|---|---|
| AbstractList | The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods. The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods.The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type identification based on unsupervised clustering is one of the fundamental tasks of scRNA-seq data analysis. Although many single-cell clustering methods have been developed recently, few can fully exploit the deep potential relationships between cells, resulting in suboptimal clustering. In this paper, we propose scGAMF, a graph autoencoder-based multi-level kernel subspace fusion framework for scRNA-seq data analysis. Based on multiple top feature sets, scGAMF unifies deep feature embedding and kernel space analysis into a single framework to learn an accurate clustering affinity matrix. First, we construct multiple top feature sets to avoid the high variability caused by single feature set learning. Second, scGAMF uses a graph autoencoder (GAEs) to extract deep information embedded in the data, and learn embeddings including gene expression patterns and cell-cell relationships. Third, to fully explore the deep potential relationships between cells, we design a multi-level kernel space fusion strategy. This strategy uses a kernel expression model with adaptive similarity preservation to learn a self-expression matrix shared by all embedding spaces of a given feature set, and a consensus affinity matrix across multiple top feature sets. Finally, the consensus affinity matrix is used for spectral clustering, visualization, and identification of gene markers. Extensive validation on real datasets shows that scGAMF achieves higher clustering accuracy than many popular single-cell analysis methods. |
| Author | Qiao, Tian-Jing Zheng, Chun-Hou Wang, Juan Shang, Jun-Liang Liu, Jin-Xing |
| Author_xml | – sequence: 1 givenname: Juan orcidid: 0000-0003-3934-0435 surname: Wang fullname: Wang, Juan email: wangjuansdu@163.com organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 2 givenname: Tian-Jing orcidid: 0000-0002-0619-1202 surname: Qiao fullname: Qiao, Tian-Jing email: qiaotianjing@163.com organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 3 givenname: Chun-Hou orcidid: 0000-0002-2695-1926 surname: Zheng fullname: Zheng, Chun-Hou email: zhengch99@126.com organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 4 givenname: Jin-Xing orcidid: 0000-0001-6104-2149 surname: Liu fullname: Liu, Jin-Xing email: sdcavell@126.com organization: School of Computer Science, Qufu Normal University, Rizhao, China – sequence: 5 givenname: Jun-Liang orcidid: 0000-0002-8488-2228 surname: Shang fullname: Shang, Jun-Liang email: shangjunliang110@163.com organization: School of Computer Science, Qufu Normal University, Rizhao, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39264790$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kU9PGzEQxa2KqoG0H6BShXzksqn_7W58TCISoqZwID2vvPYsdbuxF3sXxLfHIaGqOHCad_i9mdF7Z-jEeQcIfaVkQimR37eL-XzCCBMTLnIpC_IBndI8L7OkxcleizzLZcFH6CzGPySRkohPaMQlK0QpySlyM3wNj3gVVPcbz4beg9PeQMjmKoLBP4e2t9kGHqDFPyC4NG6HOnZKA14O0XqHl0Ht4NGHv7jxAd9ad9dCtoC2xdunDvDagOttY7XqE_0ZfWxUG-HLcY7Rr-XldnGVbW5W68Vsk2nOWJ-ZWuRUT0nRSE5ZbagyYOS04DAFahiTjaFU10wxMtWlYLSkutSgNQHO64byMbo47O2Cvx8g9tXORp2eUg78ECtOiSApBcYTen5Eh3oHpuqC3anwVL1mlAB6AHTwMQZo_iGUVPseqn0P1b6H6thD8pRvPNr2Lwn0Qdn2Xee3g9MCwH-XilIWOePPs9eVJw |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1093_bib_bbaf378 |
| Cites_doi | 10.1016/j.cell.2016.01.047 10.1016/j.stem.2015.09.011 10.1093/bioinformatics/bty390 10.1093/bioinformatics/btab787 10.1038/s42256-019-0037-0 10.1038/nmeth.4236 10.1109/TNNLS.2022.3190289 10.1038/nn.3881 10.1109/TCYB.2022.3175771 10.1016/j.cell.2019.05.031 10.1038/nn.4216 10.1038/ni.3437 10.1109/JBHI.2021.3091506 10.1093/bib/bbab531 10.1093/bioinformatics/bty050 10.1093/bioinformatics/btac099 10.1093/bib/bbaa316 10.1038/nature13173 10.1126/science.1245316 10.1093/bioinformatics/btz139 10.1093/bioinformatics/btab276 10.1145/3132847.3132967 10.1109/TPAMI.2018.2794348 10.1016/0169-7439(87)80084-9 10.1109/JBHI.2020.2991172 10.1038/nmeth.4207 10.1038/s41467-022-30755-0 10.1016/j.jmva.2006.11.013 10.1007/s11222-007-9033-z 10.1109/TPAMI.2013.57 10.15252/embr.201540946 10.1093/bib/bby076 10.1109/ACCESS.2020.2988796 10.1093/bib/bbab236 10.1016/j.molcel.2015.04.005 10.1145/3366423.3380214 10.1016/j.neucom.2022.04.083 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TCBB.2024.3459960 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 2303 |
| ExternalDocumentID | 39264790 10_1109_TCBB_2024_3459960 10679652 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62172253; 62172254; 61972226 funderid: 10.13039/501100001809 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c322t-db451c806f9312bd1aded9863e8e1d229fd11cb2a208c742171c7cecc0e33bf13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375732400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Thu Oct 02 10:47:47 EDT 2025 Wed Aug 06 16:36:17 EDT 2025 Sat Nov 29 01:52:07 EST 2025 Tue Nov 18 21:14:31 EST 2025 Wed Aug 27 02:33:19 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-db451c806f9312bd1aded9863e8e1d229fd11cb2a208c742171c7cecc0e33bf13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-0619-1202 0000-0001-6104-2149 0000-0003-3934-0435 0000-0002-8488-2228 0000-0002-2695-1926 |
| PMID | 39264790 |
| PQID | 3104039223 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | pubmed_primary_39264790 proquest_miscellaneous_3104039223 crossref_primary_10_1109_TCBB_2024_3459960 ieee_primary_10679652 crossref_citationtrail_10_1109_TCBB_2024_3459960 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Strehl (ref30) 2002; 3 ref24 ref23 ref26 ref25 ref20 Laurens (ref7) 2008; 9 ref22 ref21 ref28 ref27 ref29 ref9 ref4 ref3 ref6 ref5 ref40 McInnes (ref8) 2018 |
| References_xml | – ident: ref34 doi: 10.1016/j.cell.2016.01.047 – ident: ref38 doi: 10.1016/j.stem.2015.09.011 – volume: 3 start-page: 583 issue: 12 year: 2002 ident: ref30 article-title: Cluster ensembles—A knowledge reuse framework for combining multiple partitions publication-title: J. Mach. Learn. Res. – ident: ref11 doi: 10.1093/bioinformatics/bty390 – ident: ref10 doi: 10.1093/bioinformatics/btab787 – ident: ref20 doi: 10.1038/s42256-019-0037-0 – ident: ref17 doi: 10.1038/nmeth.4236 – ident: ref24 doi: 10.1109/TNNLS.2022.3190289 – year: 2018 ident: ref8 article-title: Umap: Uniform manifold approximation and projection for dimension reduction – ident: ref37 doi: 10.1038/nn.3881 – ident: ref27 doi: 10.1109/TCYB.2022.3175771 – ident: ref18 doi: 10.1016/j.cell.2019.05.031 – ident: ref39 doi: 10.1038/nn.4216 – ident: ref36 doi: 10.1038/ni.3437 – ident: ref9 doi: 10.1109/JBHI.2021.3091506 – ident: ref3 doi: 10.1093/bib/bbab531 – ident: ref15 doi: 10.1093/bioinformatics/bty050 – ident: ref25 doi: 10.1093/bioinformatics/btac099 – ident: ref21 doi: 10.1093/bib/bbaa316 – ident: ref33 doi: 10.1038/nature13173 – ident: ref35 doi: 10.1126/science.1245316 – ident: ref12 doi: 10.1093/bioinformatics/btz139 – ident: ref16 doi: 10.1093/bioinformatics/btab276 – ident: ref23 doi: 10.1145/3132847.3132967 – volume: 9 start-page: 2579 issue: 2605 year: 2008 ident: ref7 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref28 doi: 10.1109/TPAMI.2018.2794348 – ident: ref6 doi: 10.1016/0169-7439(87)80084-9 – ident: ref13 doi: 10.1109/JBHI.2020.2991172 – ident: ref14 doi: 10.1038/nmeth.4207 – ident: ref2 doi: 10.1038/s41467-022-30755-0 – ident: ref31 doi: 10.1016/j.jmva.2006.11.013 – ident: ref4 doi: 10.1007/s11222-007-9033-z – ident: ref26 doi: 10.1109/TPAMI.2013.57 – ident: ref32 doi: 10.15252/embr.201540946 – ident: ref40 doi: 10.1093/bib/bby076 – ident: ref5 doi: 10.1109/ACCESS.2020.2988796 – ident: ref19 doi: 10.1093/bib/bbab236 – ident: ref1 doi: 10.1016/j.molcel.2015.04.005 – ident: ref22 doi: 10.1145/3366423.3380214 – ident: ref29 doi: 10.1016/j.neucom.2022.04.083 |
| SSID | ssj0024904 |
| Score | 2.3830173 |
| Snippet | The advent of single-cell RNA sequencing (scRNA-seq) technology offers the opportunity to conduct biological research at the cellular level. Single-cell type... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2292 |
| SubjectTerms | Accuracy Adaptation models Algorithms Animals Autoencoder Cluster Analysis Clustering methods Computational Biology - methods Consensus learning Data models Deep Learning Feature extraction graph autoencoder Humans Kernel kernel self-expression model multi-level kernel space fusion multiple top fea-ture sets RNA-Seq - methods Sequence Analysis, RNA - methods Sequential analysis Single-Cell Analysis - methods single-cell type identification |
| Title | A New Graph Autoencoder-Based Multi-Level Kernel Subspace Fusion Framework for Single-Cell Type Identification |
| URI | https://ieeexplore.ieee.org/document/10679652 https://www.ncbi.nlm.nih.gov/pubmed/39264790 https://www.proquest.com/docview/3104039223 |
| Volume | 21 |
| WOSCitedRecordID | wos001375732400038&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZNaEMuSdOm7aZpUKGnghK9LEvH3SXbQkIoNC17M5Y0hsDiLZt1of8-I9mb5JJCTvZBso2_T_OSZoaQL95JD1pEJo3lTBe2Zh7teqZNNLbxroy5lNLvy_Lqys7n7seQrJ5zYQAgHz6D03Sb9_LjMnQpVHYmctSjQIm7VZamT9Z6KKzncq_AZBKwAmk1bGEK7s6up5MJuoJSnyqdy5Hskh20C4wukyh-pI9yg5Wnbc2sc2b7z_za12RvMC7puGfDAXkB7Rvyqm83-e8taccUZRr9lmpU03G3XqYilhFWbIKqLNKci8su0ykiegGrFi9JrKBTDXTWpaganW2OclG0delPVHsLYFNYLGjyZ2mf9dsMYcBD8mt2fj39zoZ-Cyzgsl6z6HUhguWmcUpIH0UdITprFFgQUUrXRCGCl7XkNqBLLUoRyoAc4KCUb4R6R7bbZQsfCDUxOiNC0ejgdM15LaJCt137GLkCrUaEb_56FYZi5KknxqLKTgl3VcKsSphVA2Yj8vV-yp--Esf_Bh8mQB4N7LEYkc8bbCtcR2lzpG5h2d1WaOZqjqSQ-G3ve9DvZ2-4cvTEUz-S3fTyPkXxmGyvVx18Ii_D3_XN7eoEyTq3J5msd8uM4qU |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxMxEB6hUqAXyqNAeBqJE5Jbv_bhYxIRihoiJALqbbW2ZyWkaIPSLBL_nrF30_bSSpx2D_bK2m88883YMwPwwVnl0MjAVV4KbrKy5o54PTd5yMvG2SKkUko_58ViUZ6f229DsnrKhUHEdPkMj-NrOssPa9_FUNmJTFGPjDTu3dg6a0jXuiqtZ1O3wEgKeEaCNRxiSmFPltPJhJxBZY61SQVJDuA-MYPcFFEZX7NIqcXKzWwzWZ3Z4X-u9xE8HOglG_fy8BjuYPsE7vUNJ_8-hXbMSKuxz7FKNRt323UsYxlwwydkzAJL2bh8Hu8RsTPctPSIioXcamSzLsbV2Gx3mYsR22XfyfCtkE9xtWLRo2V93m8zBAKP4Mfs03J6yoeOC9zTxt7y4EwmfSnyxmqpXJB1wGDLXGOJMihlmyCld6pWovTkVMtC-sKTFAjU2jVSP4O9dt3iC2B5CDaXPmuMt6YWopZBk-NuXAhCo9EjELu_XvmhHHnsirGqklsibBUxqyJm1YDZCD5eTvnd1-K4bfBRBOTawB6LEbzfYVvRTorHI3WL6-6iIqJrBAmForU970G_nL2TlZc3fPUdPDhdfp1X8y-Ls1dwEBfSJyy-hr3tpsM3sO__bH9dbN4mkf0HavDlBg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+New+Graph+Autoencoder-Based+Multi-Level+Kernel+Subspace+Fusion+Framework+for+Single-Cell+Type+Identification&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Wang%2C+Juan&rft.au=Qiao%2C+Tian-Jing&rft.au=Zheng%2C+Chun-Hou&rft.au=Liu%2C+Jin-Xing&rft.date=2024-11-01&rft.issn=1557-9964&rft.eissn=1557-9964&rft.volume=21&rft.issue=6&rft.spage=2292&rft_id=info:doi/10.1109%2FTCBB.2024.3459960&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |