CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data

One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on cybernetics Ročník 55; číslo 2; s. 684 - 697
Hlavní autori: Yu, Hang, Wen, Jiahao, Sun, Yiping, Wei, Xiao, Lu, Jie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.02.2025
Predmet:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.
AbstractList One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.
One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.
Author Wen, Jiahao
Lu, Jie
Sun, Yiping
Wei, Xiao
Yu, Hang
Author_xml – sequence: 1
  givenname: Hang
  orcidid: 0000-0003-3444-9992
  surname: Yu
  fullname: Yu, Hang
  email: yuhang@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China
– sequence: 2
  givenname: Jiahao
  orcidid: 0000-0001-6550-7927
  surname: Wen
  fullname: Wen, Jiahao
  email: wenjh@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China
– sequence: 3
  givenname: Yiping
  orcidid: 0009-0005-3411-6823
  surname: Sun
  fullname: Sun, Yiping
  email: syp2021@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China
– sequence: 4
  givenname: Xiao
  orcidid: 0000-0002-6258-6129
  surname: Wei
  fullname: Wei, Xiao
  email: xwei@shu.edu.cn
  organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China
– sequence: 5
  givenname: Jie
  orcidid: 0000-0003-0690-4732
  surname: Lu
  fullname: Lu, Jie
  email: Jie.Lu@uts.edu.au
  organization: Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40030368$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1v1DAQhi3UipbSH4CEkI9csvXXxg63JcBSabUcthy4EE2dMRiSOLUdKv49We22QhywRhqP9bxj6XlGToYwICEvOFtwzqqrm_rL24VgQi2kMlXJlk_IueClKYTQy5PHe6nPyGVKP9h8zPxUmafkTDEmmSzNOflar4r1dvuGrmgd-hEzDhaL1T1EpOsI43e6xSlCN7d8H-JP6kKkO-x9sZtGjL98wpZuEOLgh280DHSXI0K_H95Bhufk1EGX8PLYL8jnD-9v6o_F5tP6ul5tCiuFyEVblcCBCV1yq91cXAku1VJVTN5C5VzLjEXkpkKjK4tOCWMdIErmWgdaXpDXh71jDHcTptz0PlnsOhgwTKmRXJdSMW7UjL46otNtj20zRt9D_N08OJkBfgBsDClFdI8IZ81efbNX3-zVN0f1c0b_k7E-Q_ZhyBF899_ky0PSI-JfP-lSG2XkHxpQj3o
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TCYB_2025_3587025
crossref_primary_10_1142_S0218126625503670
crossref_primary_10_1016_j_asoc_2025_113422
Cites_doi 10.1109/TCYB.2023.3339242
10.1016/j.artint.2014.01.001
10.1016/j.ins.2019.08.050
10.1109/TSMCA.2007.904745
10.1145/347090.347107
10.1109/TNNLS.2013.2277712
10.1109/TBDATA.2023.3234529
10.1016/j.patcog.2022.109113
10.1109/TCYB.2021.3070420
10.1007/s10994-017-5642-8
10.1016/j.ins.2021.05.057
10.1109/TNNLS.2020.3008445
10.1007/BFb0056334
10.1109/CVPR.2019.00521
10.1109/TCYB.2024.3429459
10.1109/IROS.2018.8593901
10.1109/ICDM.2009.76
10.1007/978-3-642-28931-6_50
10.1109/MCI.2015.2471196
10.1145/3394486.3406474
10.1109/TNNLS.2019.2947658
10.1007/978-1-4419-8020-5
10.1007/s12530-012-9059-0
10.1109/TCYB.2023.3241171
10.1016/j.neucom.2008.06.011
10.1007/978-3-031-01571-7
10.1609/aaai.v37i4.25596
10.1007/s10489-019-01585-3
10.1145/3209978.3210006
10.1007/s10489-018-1149-7
10.1137/1.9781611972771.42
10.1109/TSMC.2023.3293462
10.1109/MSP.2012.2211477
10.1109/CVPR.2019.01157
10.1016/j.ins.2020.03.052
10.1145/3589334.3645453
10.1109/TCYB.2021.3071860
10.1109/TCYB.2021.3054161
10.1007/s10115-011-0447-8
10.1109/IJCNN52387.2021.9533412
10.1016/j.ins.2022.07.022
10.1016/j.ins.2023.119235
10.1109/TCYB.2022.3164696
10.1609/aaai.v34i04.5984
10.1145/3639054
10.1016/j.ins.2021.10.068
10.1609/aaai.v30i1.10283
10.1111/0824-7935.00142
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3489605
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 697
ExternalDocumentID 40030368
10_1109_TCYB_2024_3489605
10767848
Genre orig-research
Journal Article
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c322t-d96a1a02761c7fc7f14213454903ba9ffd08cee189e879cef428cfaee30fdfa73
IEDL.DBID RIE
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Thu Oct 02 18:01:00 EDT 2025
Mon Jul 21 05:51:02 EDT 2025
Sat Nov 29 02:02:42 EST 2025
Tue Nov 18 22:23:13 EST 2025
Wed Aug 27 01:53:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-d96a1a02761c7fc7f14213454903ba9ffd08cee189e879cef428cfaee30fdfa73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0690-4732
0000-0003-3444-9992
0009-0005-3411-6823
0000-0002-6258-6129
0000-0001-6550-7927
PMID 40030368
PQID 3176340184
PQPubID 23479
PageCount 14
ParticipantIDs ieee_primary_10767848
crossref_primary_10_1109_TCYB_2024_3489605
pubmed_primary_40030368
crossref_citationtrail_10_1109_TCYB_2024_3489605
proquest_miscellaneous_3176340184
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref56
ref15
Wagner (ref53)
ref14
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Li (ref38) 2023
ref51
ref50
ref46
ref45
ref47
ref42
Kipf (ref37) 2017
ref43
Maas (ref48)
ref49
ref8
ref7
Kingma (ref59) 2017
ref4
ref3
ref6
ref5
ref40
ref35
ref34
Aguilar (ref36) 2023
ref31
ref30
ref33
ref32
ref2
ref1
Velivcković (ref44) 2018
ref24
Glorot (ref58)
ref23
ref26
ref25
ref20
Smyth (ref41)
ref22
ref21
ref28
ref27
ref29
Sharma (ref39)
Song (ref9)
References_xml – ident: ref20
  doi: 10.1109/TCYB.2023.3339242
– start-page: 5095
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref53
  article-title: Semi-supervised learning on data streams via temporal label propagation
– year: 2017
  ident: ref37
  article-title: Semi-supervised classification with graph convolutional networks
  publication-title: arXiv:1609.02907
– ident: ref22
  doi: 10.1016/j.artint.2014.01.001
– ident: ref4
  doi: 10.1016/j.ins.2019.08.050
– ident: ref23
  doi: 10.1109/TSMCA.2007.904745
– ident: ref25
  doi: 10.1145/347090.347107
– year: 2017
  ident: ref59
  article-title: Adam: A method for stochastic optimization
  publication-title: arXiv:1412.6980
– ident: ref50
  doi: 10.1109/TNNLS.2013.2277712
– ident: ref16
  doi: 10.1109/TBDATA.2023.3234529
– start-page: 1900
  volume-title: Proc. 39th Conf. Uncertain. Artif. Intell.
  ident: ref39
  article-title: Efficiently learning the graph for semi-supervised learning
– start-page: 249
  volume-title: Proc. 13th Int. Conf. Artif. Intell. Stat.
  ident: ref58
  article-title: Understanding the difficulty of training deep feedforward neural networks
– start-page: 1
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref9
  article-title: Optimal block-wise asymmetric graph construction for graph-based semi-supervised learning
– ident: ref18
  doi: 10.1016/j.patcog.2022.109113
– ident: ref31
  doi: 10.1109/TCYB.2021.3070420
– ident: ref54
  doi: 10.1007/s10994-017-5642-8
– ident: ref35
  doi: 10.1016/j.ins.2021.05.057
– ident: ref17
  doi: 10.1109/TNNLS.2020.3008445
– ident: ref43
  doi: 10.1007/BFb0056334
– ident: ref12
  doi: 10.1109/CVPR.2019.00521
– ident: ref30
  doi: 10.1109/TCYB.2024.3429459
– ident: ref52
  doi: 10.1109/IROS.2018.8593901
– ident: ref27
  doi: 10.1109/ICDM.2009.76
– ident: ref24
  doi: 10.1007/978-3-642-28931-6_50
– ident: ref1
  doi: 10.1109/MCI.2015.2471196
– ident: ref13
  doi: 10.1145/3394486.3406474
– ident: ref28
  doi: 10.1109/TNNLS.2019.2947658
– ident: ref2
  doi: 10.1007/978-1-4419-8020-5
– ident: ref3
  doi: 10.1007/s12530-012-9059-0
– ident: ref32
  doi: 10.1109/TCYB.2023.3241171
– ident: ref40
  doi: 10.1016/j.neucom.2008.06.011
– ident: ref11
  doi: 10.1007/978-3-031-01571-7
– ident: ref29
  doi: 10.1609/aaai.v37i4.25596
– ident: ref5
  doi: 10.1007/s10489-019-01585-3
– ident: ref46
  doi: 10.1145/3209978.3210006
– ident: ref6
  doi: 10.1007/s10489-018-1149-7
– year: 2023
  ident: ref36
  article-title: The strongly Leibniz property and the Gromov–Hausdorff propinquity
  publication-title: arXiv:2301.05692
– ident: ref26
  doi: 10.1137/1.9781611972771.42
– ident: ref34
  doi: 10.1109/TSMC.2023.3293462
– ident: ref49
  doi: 10.1109/MSP.2012.2211477
– ident: ref8
  doi: 10.1109/CVPR.2019.01157
– start-page: 377
  volume-title: Proc. 14th Int. Joint Conf. Artif. Intell.
  ident: ref41
  article-title: Remembering to forget
– ident: ref47
  doi: 10.1016/j.ins.2020.03.052
– ident: ref10
  doi: 10.1145/3589334.3645453
– start-page: 142
  volume-title: Proc. 49th Annu. Meeting Assoc. Comput. Linguist., Human Lang. Technol.
  ident: ref48
  article-title: Learning word vectors for sentiment analysis
– ident: ref14
  doi: 10.1109/TCYB.2021.3071860
– year: 2018
  ident: ref44
  article-title: Graph attention networks
  publication-title: arXiv:1710.10903
– year: 2023
  ident: ref38
  article-title: Learning on graphs with graph convolution
– ident: ref21
  doi: 10.1109/TCYB.2021.3054161
– ident: ref7
  doi: 10.1007/s10115-011-0447-8
– ident: ref56
  doi: 10.1109/IJCNN52387.2021.9533412
– ident: ref19
  doi: 10.1016/j.ins.2022.07.022
– ident: ref33
  doi: 10.1016/j.ins.2023.119235
– ident: ref15
  doi: 10.1109/TCYB.2022.3164696
– ident: ref45
  doi: 10.1609/aaai.v34i04.5984
– ident: ref57
  doi: 10.1145/3639054
– ident: ref51
  doi: 10.1016/j.ins.2021.10.068
– ident: ref55
  doi: 10.1609/aaai.v30i1.10283
– ident: ref42
  doi: 10.1111/0824-7935.00142
SSID ssj0000816898
Score 2.426197
Snippet One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 684
SubjectTerms Adaptation models
Competence model
Concept drift
Correlation
Data models
graph neural network
Graph neural networks
Heuristic algorithms
Reliability
Semantics
semi-supervised learning (SSL)
Semisupervised learning
streaming data
Streams
Title CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data
URI https://ieeexplore.ieee.org/document/10767848
https://www.ncbi.nlm.nih.gov/pubmed/40030368
https://www.proquest.com/docview/3176340184
Volume 55
WOSCitedRecordID wos001367308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHhRq1Xro0TwoEJqdjduEm-12npaBCvUi0uazUrBbksf-vedZGPRg4KwhywkIWQymW8yyTcInWphifa4JFwZSsBCDIgIs5BQxcA4xyxmSrtkEzxJRL8vH_xjdfcWxhjjLp-Zpi26WH421gt7VAYazmFvZWIVrXIel4-1lgcqLoOEy30bQoEArOA-ihlQedlrP9-ANxiyZsQEoParH3bIJVb5HWM6W9PZ_Ocot9CGB5W4Va6CKloxxTaqerWd4TPPLX2-g17aLdJNkmvcwu0lYiatDzU1uGu5q7Fl64C-kvJ6OAZMix_NaEgeFxO7rcxMhj0n6yseF9hGtdXI_tyquaqhp85dr31PfIoFokGT5ySTsQoUuKZxoHkOX8AsxRs4jTQaKJnnGRVgRgMhjeBSmxy8FZ0rYyKaZ7ni0S6qFOPC7CMsw1BCPao4y8HnlgqADtg-mWUDKRhjdUS_JjzVnn_cpsF4S50fQmVqZZRaGaVeRnV0sWwyKck3_qpcs7L4VrEUQx2dfIk1BdWx8RBVmPFilgJ0iiPwLwWMba-U97I1s7tfFIuDX3o9ROuhzQTs7m8focp8ujDHaE2_z4ezaQPWZ1803Pr8BAtM3Ww
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-qLdiXWr_as35E6IMK0exu3CS-nefHlV6Xwp2gLy65bFYE3ZP70H-_k2w89OEKwj5kIQkhk8n8JpP8BuCnkY5oTygqtGUULUSfyriIKdMcjXPKU66NTzYhskxeXam_4bG6fwtjrfWXz-yBK_pYfjEwE3dUhhoucG_lcg4-HnEes_q51vRIxeeQ8NlvYyxQBBYixDEjpg57resT9AdjfpBwibj96I0l8qlVZqNMb23OF985zq_wJcBK0qzXwRJ8sNUyLAXFHZHdwC69twI3rSa9yLJj0iStKWamzWc9tOTCsVcTx9eBfWX1BXGCqJZ07cMd7U4e3cYysgUJrKy3ZFARF9fWD-7nVI_1Klyen_VabRqSLFCDujymhUp1pNE5TSMjSvwi7kje0G1kSV-rsiyYREMaSWWlUMaW6K-YUlubsLIotUjWYL4aVPY7EBXHCusxLXiJXrfSCHXQ-qmi6CvJOW8Ae5nw3AQGcpcI4z73nghTuZNR7mSUBxk1YH_a5LGm3_hf5VUni1cVazE0YOdFrDkqj4uI6MoOJqMcwVOaoIcpcWzfanlPW3O3_yWpXJ_R6zYstHt_OnnnV_b7B3yOXV5gf5t7A-bHw4ndhE_maXw3Gm75VfoPgIffyw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CA-GNN%3A+A+Competence-Aware+Graph+Neural+Network+for+Semi-Supervised+Learning+on+Streaming+Data&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yu%2C+Hang&rft.au=Wen%2C+Jiahao&rft.au=Sun%2C+Yiping&rft.au=Wei%2C+Xiao&rft.date=2025-02-01&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2024.3489605&rft_id=info%3Apmid%2F40030368&rft.externalDocID=40030368
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon