CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data
One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 55; číslo 2; s. 684 - 697 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.02.2025
|
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods. |
|---|---|
| AbstractList | One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods. One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods.One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms becoming an efficient tool for streaming data mining. Recently, the graph-based SSL algorithms have been proposed to improve SSL performance because the graph structure can utilize the interactivity between surrounding nodes. However, graph-based SSL algorithms have two main limitations when applied to streaming data. First, not all the labels of the data in the streaming data may be reliable, and direct classification using a graph can lead to suboptimal performance. Second, graph-based SSL algorithms assume the structure of the graph is static, but the learning environment of streaming data is dynamic. Hence, we propose a competence-aware graph neural network (CA-GNN) to deal with these two limitations. Unlike other models, CA-GNN does not directly rely on graph information that could include mislabeled nodes. Instead, a competence model is used to explore latent semantic correlations in the streaming data and capture the reliability for each data. A streaming learning strategy then evolves CA-GNN's parameters to capture the dynamism of the graph sequences. We conducted experiments using seven real datasets and four synthetic datasets, respectively, and compared the outcomes across various methods. The results demonstrate that CA-GNN classifies streaming data more effectively than the state-of-the-art (SOTA) methods. |
| Author | Wen, Jiahao Lu, Jie Sun, Yiping Wei, Xiao Yu, Hang |
| Author_xml | – sequence: 1 givenname: Hang orcidid: 0000-0003-3444-9992 surname: Yu fullname: Yu, Hang email: yuhang@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China – sequence: 2 givenname: Jiahao orcidid: 0000-0001-6550-7927 surname: Wen fullname: Wen, Jiahao email: wenjh@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China – sequence: 3 givenname: Yiping orcidid: 0009-0005-3411-6823 surname: Sun fullname: Sun, Yiping email: syp2021@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China – sequence: 4 givenname: Xiao orcidid: 0000-0002-6258-6129 surname: Wei fullname: Wei, Xiao email: xwei@shu.edu.cn organization: School of Computer Engineering and Science, Shanghai University, Shanghai, China – sequence: 5 givenname: Jie orcidid: 0000-0003-0690-4732 surname: Lu fullname: Lu, Jie email: Jie.Lu@uts.edu.au organization: Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40030368$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1v1DAQhi3UipbSH4CEkI9csvXXxg63JcBSabUcthy4EE2dMRiSOLUdKv49We22QhywRhqP9bxj6XlGToYwICEvOFtwzqqrm_rL24VgQi2kMlXJlk_IueClKYTQy5PHe6nPyGVKP9h8zPxUmafkTDEmmSzNOflar4r1dvuGrmgd-hEzDhaL1T1EpOsI43e6xSlCN7d8H-JP6kKkO-x9sZtGjL98wpZuEOLgh280DHSXI0K_H95Bhufk1EGX8PLYL8jnD-9v6o_F5tP6ul5tCiuFyEVblcCBCV1yq91cXAku1VJVTN5C5VzLjEXkpkKjK4tOCWMdIErmWgdaXpDXh71jDHcTptz0PlnsOhgwTKmRXJdSMW7UjL46otNtj20zRt9D_N08OJkBfgBsDClFdI8IZ81efbNX3-zVN0f1c0b_k7E-Q_ZhyBF899_ky0PSI-JfP-lSG2XkHxpQj3o |
| CODEN | ITCEB8 |
| CitedBy_id | crossref_primary_10_1109_TCYB_2025_3587025 crossref_primary_10_1142_S0218126625503670 crossref_primary_10_1016_j_asoc_2025_113422 |
| Cites_doi | 10.1109/TCYB.2023.3339242 10.1016/j.artint.2014.01.001 10.1016/j.ins.2019.08.050 10.1109/TSMCA.2007.904745 10.1145/347090.347107 10.1109/TNNLS.2013.2277712 10.1109/TBDATA.2023.3234529 10.1016/j.patcog.2022.109113 10.1109/TCYB.2021.3070420 10.1007/s10994-017-5642-8 10.1016/j.ins.2021.05.057 10.1109/TNNLS.2020.3008445 10.1007/BFb0056334 10.1109/CVPR.2019.00521 10.1109/TCYB.2024.3429459 10.1109/IROS.2018.8593901 10.1109/ICDM.2009.76 10.1007/978-3-642-28931-6_50 10.1109/MCI.2015.2471196 10.1145/3394486.3406474 10.1109/TNNLS.2019.2947658 10.1007/978-1-4419-8020-5 10.1007/s12530-012-9059-0 10.1109/TCYB.2023.3241171 10.1016/j.neucom.2008.06.011 10.1007/978-3-031-01571-7 10.1609/aaai.v37i4.25596 10.1007/s10489-019-01585-3 10.1145/3209978.3210006 10.1007/s10489-018-1149-7 10.1137/1.9781611972771.42 10.1109/TSMC.2023.3293462 10.1109/MSP.2012.2211477 10.1109/CVPR.2019.01157 10.1016/j.ins.2020.03.052 10.1145/3589334.3645453 10.1109/TCYB.2021.3071860 10.1109/TCYB.2021.3054161 10.1007/s10115-011-0447-8 10.1109/IJCNN52387.2021.9533412 10.1016/j.ins.2022.07.022 10.1016/j.ins.2023.119235 10.1109/TCYB.2022.3164696 10.1609/aaai.v34i04.5984 10.1145/3639054 10.1016/j.ins.2021.10.068 10.1609/aaai.v30i1.10283 10.1111/0824-7935.00142 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TCYB.2024.3489605 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library (IEL) (UW System Shared) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 697 |
| ExternalDocumentID | 40030368 10_1109_TCYB_2024_3489605 10767848 |
| Genre | orig-research Journal Article |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c322t-d96a1a02761c7fc7f14213454903ba9ffd08cee189e879cef428cfaee30fdfa73 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 2168-2275 |
| IngestDate | Thu Oct 02 18:01:00 EDT 2025 Mon Jul 21 05:51:02 EDT 2025 Sat Nov 29 02:02:42 EST 2025 Tue Nov 18 22:23:13 EST 2025 Wed Aug 27 01:53:11 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-d96a1a02761c7fc7f14213454903ba9ffd08cee189e879cef428cfaee30fdfa73 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0690-4732 0000-0003-3444-9992 0009-0005-3411-6823 0000-0002-6258-6129 0000-0001-6550-7927 |
| PMID | 40030368 |
| PQID | 3176340184 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | ieee_primary_10767848 crossref_primary_10_1109_TCYB_2024_3489605 pubmed_primary_40030368 crossref_citationtrail_10_1109_TCYB_2024_3489605 proquest_miscellaneous_3176340184 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-02-01 |
| PublicationDateYYYYMMDD | 2025-02-01 |
| PublicationDate_xml | – month: 02 year: 2025 text: 2025-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref56 ref15 Wagner (ref53) ref14 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Li (ref38) 2023 ref51 ref50 ref46 ref45 ref47 ref42 Kipf (ref37) 2017 ref43 Maas (ref48) ref49 ref8 ref7 Kingma (ref59) 2017 ref4 ref3 ref6 ref5 ref40 ref35 ref34 Aguilar (ref36) 2023 ref31 ref30 ref33 ref32 ref2 ref1 Velivcković (ref44) 2018 ref24 Glorot (ref58) ref23 ref26 ref25 ref20 Smyth (ref41) ref22 ref21 ref28 ref27 ref29 Sharma (ref39) Song (ref9) |
| References_xml | – ident: ref20 doi: 10.1109/TCYB.2023.3339242 – start-page: 5095 volume-title: Proc. Int. Conf. Mach. Learn. ident: ref53 article-title: Semi-supervised learning on data streams via temporal label propagation – year: 2017 ident: ref37 article-title: Semi-supervised classification with graph convolutional networks publication-title: arXiv:1609.02907 – ident: ref22 doi: 10.1016/j.artint.2014.01.001 – ident: ref4 doi: 10.1016/j.ins.2019.08.050 – ident: ref23 doi: 10.1109/TSMCA.2007.904745 – ident: ref25 doi: 10.1145/347090.347107 – year: 2017 ident: ref59 article-title: Adam: A method for stochastic optimization publication-title: arXiv:1412.6980 – ident: ref50 doi: 10.1109/TNNLS.2013.2277712 – ident: ref16 doi: 10.1109/TBDATA.2023.3234529 – start-page: 1900 volume-title: Proc. 39th Conf. Uncertain. Artif. Intell. ident: ref39 article-title: Efficiently learning the graph for semi-supervised learning – start-page: 249 volume-title: Proc. 13th Int. Conf. Artif. Intell. Stat. ident: ref58 article-title: Understanding the difficulty of training deep feedforward neural networks – start-page: 1 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref9 article-title: Optimal block-wise asymmetric graph construction for graph-based semi-supervised learning – ident: ref18 doi: 10.1016/j.patcog.2022.109113 – ident: ref31 doi: 10.1109/TCYB.2021.3070420 – ident: ref54 doi: 10.1007/s10994-017-5642-8 – ident: ref35 doi: 10.1016/j.ins.2021.05.057 – ident: ref17 doi: 10.1109/TNNLS.2020.3008445 – ident: ref43 doi: 10.1007/BFb0056334 – ident: ref12 doi: 10.1109/CVPR.2019.00521 – ident: ref30 doi: 10.1109/TCYB.2024.3429459 – ident: ref52 doi: 10.1109/IROS.2018.8593901 – ident: ref27 doi: 10.1109/ICDM.2009.76 – ident: ref24 doi: 10.1007/978-3-642-28931-6_50 – ident: ref1 doi: 10.1109/MCI.2015.2471196 – ident: ref13 doi: 10.1145/3394486.3406474 – ident: ref28 doi: 10.1109/TNNLS.2019.2947658 – ident: ref2 doi: 10.1007/978-1-4419-8020-5 – ident: ref3 doi: 10.1007/s12530-012-9059-0 – ident: ref32 doi: 10.1109/TCYB.2023.3241171 – ident: ref40 doi: 10.1016/j.neucom.2008.06.011 – ident: ref11 doi: 10.1007/978-3-031-01571-7 – ident: ref29 doi: 10.1609/aaai.v37i4.25596 – ident: ref5 doi: 10.1007/s10489-019-01585-3 – ident: ref46 doi: 10.1145/3209978.3210006 – ident: ref6 doi: 10.1007/s10489-018-1149-7 – year: 2023 ident: ref36 article-title: The strongly Leibniz property and the Gromov–Hausdorff propinquity publication-title: arXiv:2301.05692 – ident: ref26 doi: 10.1137/1.9781611972771.42 – ident: ref34 doi: 10.1109/TSMC.2023.3293462 – ident: ref49 doi: 10.1109/MSP.2012.2211477 – ident: ref8 doi: 10.1109/CVPR.2019.01157 – start-page: 377 volume-title: Proc. 14th Int. Joint Conf. Artif. Intell. ident: ref41 article-title: Remembering to forget – ident: ref47 doi: 10.1016/j.ins.2020.03.052 – ident: ref10 doi: 10.1145/3589334.3645453 – start-page: 142 volume-title: Proc. 49th Annu. Meeting Assoc. Comput. Linguist., Human Lang. Technol. ident: ref48 article-title: Learning word vectors for sentiment analysis – ident: ref14 doi: 10.1109/TCYB.2021.3071860 – year: 2018 ident: ref44 article-title: Graph attention networks publication-title: arXiv:1710.10903 – year: 2023 ident: ref38 article-title: Learning on graphs with graph convolution – ident: ref21 doi: 10.1109/TCYB.2021.3054161 – ident: ref7 doi: 10.1007/s10115-011-0447-8 – ident: ref56 doi: 10.1109/IJCNN52387.2021.9533412 – ident: ref19 doi: 10.1016/j.ins.2022.07.022 – ident: ref33 doi: 10.1016/j.ins.2023.119235 – ident: ref15 doi: 10.1109/TCYB.2022.3164696 – ident: ref45 doi: 10.1609/aaai.v34i04.5984 – ident: ref57 doi: 10.1145/3639054 – ident: ref51 doi: 10.1016/j.ins.2021.10.068 – ident: ref55 doi: 10.1609/aaai.v30i1.10283 – ident: ref42 doi: 10.1111/0824-7935.00142 |
| SSID | ssj0000816898 |
| Score | 2.426197 |
| Snippet | One challenge of learning from streaming data is that only a limited number of labeled examples are available, making semi-supervised learning (SSL) algorithms... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 684 |
| SubjectTerms | Adaptation models Competence model Concept drift Correlation Data models graph neural network Graph neural networks Heuristic algorithms Reliability Semantics semi-supervised learning (SSL) Semisupervised learning streaming data Streams |
| Title | CA-GNN: A Competence-Aware Graph Neural Network for Semi-Supervised Learning on Streaming Data |
| URI | https://ieeexplore.ieee.org/document/10767848 https://www.ncbi.nlm.nih.gov/pubmed/40030368 https://www.proquest.com/docview/3176340184 |
| Volume | 55 |
| WOSCitedRecordID | wos001367308500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA5aPHhRq1Xro0TwoEJqdjduEm-12npaBCvUi0uazUrBbksf-vedZGPRg4KwhywkIWQymW8yyTcInWphifa4JFwZSsBCDIgIs5BQxcA4xyxmSrtkEzxJRL8vH_xjdfcWxhjjLp-Zpi26WH421gt7VAYazmFvZWIVrXIel4-1lgcqLoOEy30bQoEArOA-ihlQedlrP9-ANxiyZsQEoParH3bIJVb5HWM6W9PZ_Ocot9CGB5W4Va6CKloxxTaqerWd4TPPLX2-g17aLdJNkmvcwu0lYiatDzU1uGu5q7Fl64C-kvJ6OAZMix_NaEgeFxO7rcxMhj0n6yseF9hGtdXI_tyquaqhp85dr31PfIoFokGT5ySTsQoUuKZxoHkOX8AsxRs4jTQaKJnnGRVgRgMhjeBSmxy8FZ0rYyKaZ7ni0S6qFOPC7CMsw1BCPao4y8HnlgqADtg-mWUDKRhjdUS_JjzVnn_cpsF4S50fQmVqZZRaGaVeRnV0sWwyKck3_qpcs7L4VrEUQx2dfIk1BdWx8RBVmPFilgJ0iiPwLwWMba-U97I1s7tfFIuDX3o9ROuhzQTs7m8focp8ujDHaE2_z4ezaQPWZ1803Pr8BAtM3Ww |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dSxwxEB-qLdiXWr_as35E6IMK0exu3CS-nefHlV6Xwp2gLy65bFYE3ZP70H-_k2w89OEKwj5kIQkhk8n8JpP8BuCnkY5oTygqtGUULUSfyriIKdMcjXPKU66NTzYhskxeXam_4bG6fwtjrfWXz-yBK_pYfjEwE3dUhhoucG_lcg4-HnEes_q51vRIxeeQ8NlvYyxQBBYixDEjpg57resT9AdjfpBwibj96I0l8qlVZqNMb23OF985zq_wJcBK0qzXwRJ8sNUyLAXFHZHdwC69twI3rSa9yLJj0iStKWamzWc9tOTCsVcTx9eBfWX1BXGCqJZ07cMd7U4e3cYysgUJrKy3ZFARF9fWD-7nVI_1Klyen_VabRqSLFCDujymhUp1pNE5TSMjSvwi7kje0G1kSV-rsiyYREMaSWWlUMaW6K-YUlubsLIotUjWYL4aVPY7EBXHCusxLXiJXrfSCHXQ-qmi6CvJOW8Ae5nw3AQGcpcI4z73nghTuZNR7mSUBxk1YH_a5LGm3_hf5VUni1cVazE0YOdFrDkqj4uI6MoOJqMcwVOaoIcpcWzfanlPW3O3_yWpXJ_R6zYstHt_OnnnV_b7B3yOXV5gf5t7A-bHw4ndhE_maXw3Gm75VfoPgIffyw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CA-GNN%3A+A+Competence-Aware+Graph+Neural+Network+for+Semi-Supervised+Learning+on+Streaming+Data&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Yu%2C+Hang&rft.au=Wen%2C+Jiahao&rft.au=Sun%2C+Yiping&rft.au=Wei%2C+Xiao&rft.date=2025-02-01&rft.eissn=2168-2275&rft.volume=PP&rft_id=info:doi/10.1109%2FTCYB.2024.3489605&rft_id=info%3Apmid%2F40030368&rft.externalDocID=40030368 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |