GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-Based Graph Autoencoder
Accurate prediction of drug-target interactions (DTIs) is essential for advancing drug discovery and repurposing. However, the sparsity of DTI data limits the effectiveness of existing computational methods, which primarily focus on sparse DTI networks and have poor performance in aggregating inform...
Gespeichert in:
| Veröffentlicht in: | IEEE journal of biomedical and health informatics Jg. 29; H. 11; S. 7896 - 7909 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.11.2025
|
| Schlagworte: | |
| ISSN: | 2168-2194, 2168-2208, 2168-2208 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Accurate prediction of drug-target interactions (DTIs) is essential for advancing drug discovery and repurposing. However, the sparsity of DTI data limits the effectiveness of existing computational methods, which primarily focus on sparse DTI networks and have poor performance in aggregating information from neighboring nodes and representing isolated nodes within the network. In this study, we propose a novel deep learning framework, named GIAE-DTI, which considers cross-modal similarity of drugs and targets and constructs a heterogeneous network for DTI prediction. Firstly, the model calculates the cross-modal similarity of drugs and proteins from the relationships among drugs, proteins, diseases, and side effects, and performs similarity integration by taking the average. Then, a drug-target heterogeneous network is constructed, including drug-drug interactions, protein-protein interactions, and drug-target interactions processed by weighted K nearest known neighbors. In the heterogeneous network, a graph autoencoder based on a graph isomorphism network is employed for feature extraction, while a dual decoder is utilized to achieve better self-supervised learning, resulting in latent feature representations for drugs and targets. Finally, a deep neural network is employed to predict DTIs. The experimental results indicate that on the benchmark dataset, GIAE-DTI achieves AUC and AUPR scores of 0.9533 and 0.9619, respectively, in DTI prediction, outperforming the current state-of-the-art methods. Additionally, case studies on four 5-hydroxytryptamine receptor-related targets and five drugs related to mental diseases show the great potential of the proposed method in practical applications. |
|---|---|
| AbstractList | Accurate prediction of drug-target interactions (DTIs) is essential for advancing drug discovery and repurposing. However, the sparsity of DTI data limits the effectiveness of existing computational methods, which primarily focus on sparse DTI networks and have poor performance in aggregating information from neighboring nodes and representing isolated nodes within the network. In this study, we propose a novel deep learning framework, named GIAE-DTI, which considers cross-modal similarity of drugs and targets and constructs a heterogeneous network for DTI prediction. Firstly, the model calculates the cross-modal similarity of drugs and proteins from the relationships among drugs, proteins, diseases, and side effects, and performs similarity integration by taking the average. Then, a drug-target heterogeneous network is constructed, including drug-drug interactions, protein-protein interactions, and drug-target interactions processed by weighted K nearest known neighbors. In the heterogeneous network, a graph autoencoder based on a graph isomorphism network is employed for feature extraction, while a dual decoder is utilized to achieve better self-supervised learning, resulting in latent feature representations for drugs and targets. Finally, a deep neural network is employed to predict DTIs. The experimental results indicate that on the benchmark dataset, GIAE-DTI achieves AUC and AUPR scores of 0.9533 and 0.9619, respectively, in DTI prediction, outperforming the current state-of-the-art methods. Additionally, case studies on four 5-hydroxytryptamine receptor-related targets and five drugs related to mental diseases show the great potential of the proposed method in practical applications. Accurate prediction of drug-target interactions (DTIs) is essential for advancing drug discovery and repurposing. However, the sparsity of DTI data limits the effectiveness of existing computational methods, which primarily focus on sparse DTI networks and have poor performance in aggregating information from neighboring nodes and representing isolated nodes within the network. In this study, we propose a novel deep learning framework, named GIAE-DTI, which considers cross-modal similarity of drugs and targets and constructs a heterogeneous network for DTI prediction. Firstly, the model calculates the cross-modal similarity of drugs and proteins from the relationships among drugs, proteins, diseases, and side effects, and performs similarity integration by taking the average. Then, a drug-target heterogeneous network is constructed, including drug-drug interactions, protein-protein interactions, and drug-target interactions processed by weighted K nearest known neighbors. In the heterogeneous network, a graph autoencoder based on a graph isomorphism network is employed for feature extraction, while a dual decoder is utilized to achieve better self-supervised learning, resulting in latent feature representations for drugs and targets. Finally, a deep neural network is employed to predict DTIs. The experimental results indicate that on the benchmark dataset, GIAE-DTI achieves AUC and AUPR scores of 0.9533 and 0.9619, respectively, in DTI prediction, outperforming the current state-of-the-art methods. Additionally, case studies on four 5-hydroxytryptamine receptor-related targets and five drugs related to mental diseases show the great potential of the proposed method in practical applications.Accurate prediction of drug-target interactions (DTIs) is essential for advancing drug discovery and repurposing. However, the sparsity of DTI data limits the effectiveness of existing computational methods, which primarily focus on sparse DTI networks and have poor performance in aggregating information from neighboring nodes and representing isolated nodes within the network. In this study, we propose a novel deep learning framework, named GIAE-DTI, which considers cross-modal similarity of drugs and targets and constructs a heterogeneous network for DTI prediction. Firstly, the model calculates the cross-modal similarity of drugs and proteins from the relationships among drugs, proteins, diseases, and side effects, and performs similarity integration by taking the average. Then, a drug-target heterogeneous network is constructed, including drug-drug interactions, protein-protein interactions, and drug-target interactions processed by weighted K nearest known neighbors. In the heterogeneous network, a graph autoencoder based on a graph isomorphism network is employed for feature extraction, while a dual decoder is utilized to achieve better self-supervised learning, resulting in latent feature representations for drugs and targets. Finally, a deep neural network is employed to predict DTIs. The experimental results indicate that on the benchmark dataset, GIAE-DTI achieves AUC and AUPR scores of 0.9533 and 0.9619, respectively, in DTI prediction, outperforming the current state-of-the-art methods. Additionally, case studies on four 5-hydroxytryptamine receptor-related targets and five drugs related to mental diseases show the great potential of the proposed method in practical applications. |
| Author | Lei, Xiujuan Wu, Fang-Xiang Chen, Jianrui Wang, Mengdi Liu, Lian |
| Author_xml | – sequence: 1 givenname: Mengdi surname: Wang fullname: Wang, Mengdi organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 2 givenname: Xiujuan orcidid: 0000-0002-9901-1732 surname: Lei fullname: Lei, Xiujuan email: xjlei@snnu.edu.cn organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 3 givenname: Lian orcidid: 0000-0001-5778-5230 surname: Liu fullname: Liu, Lian organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 4 givenname: Jianrui orcidid: 0000-0001-9104-4540 surname: Chen fullname: Chen, Jianrui organization: School of Computer Science, Shaanxi Normal University, Xi'an, China – sequence: 5 givenname: Fang-Xiang orcidid: 0000-0002-4593-9332 surname: Wu fullname: Wu, Fang-Xiang email: faw341@mail.usask.ca organization: Division of Biomedical Engineering and Department of Mechanical Engineering and Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39259623$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kUtvGjEUha2KqhCSHxCpirzMZqhfMx5nRx6FqVDSBV2PjOdCph1sYntU9d_HFIiiLno3vjr6jm2dc4YG1llA6JKSCaVEffl2O68mjDAx4SIvpRIf0IjRoswYI-XgtFMlhugihJ8kTZkkVXxCQ65YrgrGR6ibVdOH7H5Z3eDvHprWxNZu8L3vN9lS-w1EXNkIXifd2YBvdYAGO4vnkFS3AQuuD_gR4m_nf2FtGzyrHrMDNvN694ynfXRgjWvAn6OPa90FuDieY_Tj68Pybp4tnmbV3XSRGc5YzEyT56oxXHKjuQRphNJSFKyQtNTUcLFelVpRxg03OVHQ5HxdUsJXlBClkjpG14d7d9699BBivW2Dga7Tf79b8wQLkUuWJ_TqiParLTT1zrdb7f_Up4QSQA-A8S4ED-s3hJJ6X0S9L6LeF1Efi0ge-Y_HtFHvE4xet91_nZ8PzhYA3r1UyIKzgr8CcKOTPA |
| CODEN | IJBHA9 |
| CitedBy_id | crossref_primary_10_3389_fgene_2025_1608490 crossref_primary_10_1016_j_ymeth_2025_05_005 crossref_primary_10_1007_s12539_025_00713_7 |
| Cites_doi | 10.1007/s12539-023-00550-6 10.1093/bfgp/elab031 10.1039/d1sc05180f 10.2174/1389203718666161108091609 10.23919/cje.2022.00.361 10.1093/bioinformatics/btaa524 10.1093/bib/bbab275 10.1093/bioinformatics/btaa880 10.1016/j.jmgm.2023.108498 10.1109/tcbb.2021.3088614 10.1109/jbhi.2021.3088342 10.1016/j.drudis.2020.03.003 10.1038/s41467-017-00680-8 10.1038/416653a 10.1093/bioinformatics/btab715 10.23919/cje.2022.00.384 10.1016/j.compbiomed.2022.106524 10.1093/bib/bbv066 10.1145/2487575.2487670 10.1093/bioinformatics/btac048 10.1586/ecp.12.74 10.1093/bib/bbx017 10.1109/tcbb.2016.2530062 10.1038/448645a 10.1109/tcbb.2021.3065562 10.1039/c5mb00650c 10.1109/tcbb.2021.3077905 10.1038/nrd1202 10.1016/j.knosys.2023.111329 10.1186/s12859-020-03677-1 10.1038/nchembio.118 10.1371/journal.pone.0037608 10.1371/journal.pcbi.1010812 10.1016/j.knosys.2023.111337 10.1093/bib/bbac184 10.1002/jcc.21256 10.1038/s41586-021-03376-8 10.1093/bioinformatics/bty543 10.1093/bib/bbac446 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/JBHI.2024.3458794 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore: IEL CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2168-2208 |
| EndPage | 7909 |
| ExternalDocumentID | 39259623 10_1109_JBHI_2024_3458794 10676326 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62272288 funderid: 10.13039/501100001809 – fundername: Fundamental Research Funds for the Central Universities, Shaanxi Normal University grantid: GK202302006; GK202406008 – fundername: Natural Science Basic Research Program of Shaanxi grantid: 2024JC-YBQN-0624 |
| GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c322t-cd559dc373ca37e7c49a74626718a1c34fb8a9123c3c509ed53f8103b100993c3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001611081000047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2194 2168-2208 |
| IngestDate | Thu Oct 02 20:32:12 EDT 2025 Sat Nov 08 03:22:21 EST 2025 Sat Nov 29 06:54:03 EST 2025 Tue Nov 18 22:33:10 EST 2025 Wed Nov 19 08:27:19 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-cd559dc373ca37e7c49a74626718a1c34fb8a9123c3c509ed53f8103b100993c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-9104-4540 0000-0001-5778-5230 0000-0002-9901-1732 0000-0002-4593-9332 |
| PMID | 39259623 |
| PQID | 3103445725 |
| PQPubID | 23479 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_JBHI_2024_3458794 pubmed_primary_39259623 crossref_citationtrail_10_1109_JBHI_2024_3458794 proquest_miscellaneous_3103445725 ieee_primary_10676326 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE journal of biomedical and health informatics |
| PublicationTitleAbbrev | JBHI |
| PublicationTitleAlternate | IEEE J Biomed Health Inform |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref35 ref12 ref34 ref37 ref14 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref39 ref16 ref38 ref19 ref18 Xu (ref36) 2019 Jiajie (ref15) 2021; 22 ref24 ref23 ref26 ref25 ref20 ref42 Yanghe (ref5) 2017; 2017 ref41 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref40 |
| References_xml | – ident: ref29 doi: 10.1007/s12539-023-00550-6 – ident: ref3 doi: 10.1093/bfgp/elab031 – ident: ref20 doi: 10.1039/d1sc05180f – ident: ref2 doi: 10.2174/1389203718666161108091609 – ident: ref32 doi: 10.23919/cje.2022.00.361 – ident: ref38 doi: 10.1093/bioinformatics/btaa524 – ident: ref18 doi: 10.1093/bib/bbab275 – ident: ref22 doi: 10.1093/bioinformatics/btaa880 – ident: ref39 doi: 10.1016/j.jmgm.2023.108498 – ident: ref27 doi: 10.1109/tcbb.2021.3088614 – ident: ref33 doi: 10.1109/jbhi.2021.3088342 – volume: 2017 issue: 1 year: 2017 ident: ref5 article-title: Drug target protein-protein interaction networks: A systematic perspective publication-title: Biomed. Res. Int. – ident: ref1 doi: 10.1016/j.drudis.2020.03.003 – ident: ref25 doi: 10.1038/s41467-017-00680-8 – ident: ref13 doi: 10.1038/416653a – ident: ref19 doi: 10.1093/bioinformatics/btab715 – ident: ref28 doi: 10.23919/cje.2022.00.384 – ident: ref34 doi: 10.1016/j.compbiomed.2022.106524 – ident: ref7 doi: 10.1093/bib/bbv066 – ident: ref37 doi: 10.1145/2487575.2487670 – ident: ref24 doi: 10.1093/bioinformatics/btac048 – ident: ref9 doi: 10.1586/ecp.12.74 – ident: ref4 doi: 10.1093/bib/bbx017 – ident: ref35 doi: 10.1109/tcbb.2016.2530062 – ident: ref10 doi: 10.1038/448645a – volume-title: Proc. Int. Conf. Lern. Representations year: 2019 ident: ref36 article-title: How powerful are graph neural networks – ident: ref14 doi: 10.1109/tcbb.2021.3065562 – ident: ref16 doi: 10.1039/c5mb00650c – ident: ref21 doi: 10.1109/tcbb.2021.3077905 – ident: ref6 doi: 10.1038/nrd1202 – ident: ref11 doi: 10.1016/j.knosys.2023.111329 – ident: ref26 doi: 10.1186/s12859-020-03677-1 – ident: ref8 doi: 10.1038/nchembio.118 – ident: ref12 doi: 10.1371/journal.pone.0037608 – volume: 22 issue: 5 year: 2021 ident: ref15 article-title: An end-to-end heterogeneous graph representation learning-based framework for drugtarget interaction prediction publication-title: Brief. Bioinf. – ident: ref30 doi: 10.1371/journal.pcbi.1010812 – ident: ref31 doi: 10.1016/j.knosys.2023.111337 – ident: ref41 doi: 10.1093/bib/bbac184 – ident: ref17 doi: 10.1002/jcc.21256 – ident: ref42 doi: 10.1038/s41586-021-03376-8 – ident: ref40 doi: 10.1093/bioinformatics/bty543 – ident: ref23 doi: 10.1093/bib/bbac446 |
| SSID | ssj0000816896 |
| Score | 2.482682 |
| Snippet | Accurate prediction of drug-target interactions (DTIs) is essential for advancing drug discovery and repurposing. However, the sparsity of DTI data limits the... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 7896 |
| SubjectTerms | Algorithms Autoencoder Computational Biology - methods Deep Learning Diffusion tensor imaging Diseases Drug Discovery - methods Drug Interactions Drug Repositioning - methods Drug-target interactions Drugs Feature extraction graph auto-encoder graph isomorphism network heterogeneous network Heterogeneous networks Humans Neural Networks, Computer Proteins Vectors |
| Title | GIAE-DTI: Predicting Drug-Target Interactions Based on Heterogeneous Network and GIN-Based Graph Autoencoder |
| URI | https://ieeexplore.ieee.org/document/10676326 https://www.ncbi.nlm.nih.gov/pubmed/39259623 https://www.proquest.com/docview/3103445725 |
| Volume | 29 |
| WOSCitedRecordID | wos001611081000047&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 2168-2208 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816896 issn: 2168-2194 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NNCFeYOOzbKuMtCckQxLbdby3MujHxCoeCupblNoGIaEEpc3-_t05acUeQJryYllnK_KddXe-jx_A95i6gqvccOWl5tKphBvlNTc9byQ6FNE8QLLc3-jJJJ3NzG1brB5qYbz3IfnMn9MwxPJdaWt6Krugdmc9tDc2YEPrXlOstX5QCQgSAY8rwQHHmyjbKGYcmYtfl6MxeoOJPBdSpSiE27CFpgFhz4h_VFLAWHnb3AxqZ7D7nz_8CXZa-5L1G4H4DB98sQdbv9sI-j48D8f9a341Hf9gtxXNUtozu6rqRz4NSeEsvBE25Q4LdolKzrGyYCNKmylR2nxZL9ikSR5neeHYcDzhDdmQml-zfr0sqTum89UB3A2upz9HvEVc4BYv9pJbhw6Gs0ILmwvttZUm1xJ9HtRgeWyFfJinuUFlZ4VFS8M7JR7SOBLzmCxNnD2EzaIs_DEwHc-Vwk2t7aHRE7k0dSanzzpL7co7EK0OPbNtO3JCxXjOglsSmYxYlhHLspZlHThbL3lpenG8R3xA_HhF2LCiA6cr1mZ4kyg8koejywhxTUqlE9WBo4bn69UrUTl5Y9cvsJ0QMHAoUvwKm8uq9t_go_2zfFpUXRTXWdoN4voXSjrfxg |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQaUXKFDaLY8aiROS2yS21zG37Ws3sI16WFBvUdZ2EVKVVNlNf39nnOwKDq2EcrGssRV5xpoZz-MD-BJTV3BVGq681Fw6lXCjvOZm6I1EhyKaB0iWX1Od5-nVlbnsi9VDLYz3PiSf-UMahli-q21LT2VH1O5siPbGU3hG0FmmK9daP6kEDImAyJXggONdlH0cM47M0ffjSYb-YCIPhVQpiuEWbKJxQOgz4h-lFFBWHjY4g-I5f_Wfv7wNL3sLk406kXgNT3z1BjYv-hj6W7gZZ6MzfjrLvrHLhmYp8ZmdNu1vPgtp4Sy8EnYFDwt2jGrOsbpiE0qcqVHefN0uWN6lj7Oycmyc5bwjG1P7azZqlzX1x3S-2YGf52ezkwnvMRe4xau95Nahi-Gs0MKWQnttpSm1RK8HdVgZWyGv52lpUN1ZYdHW8E6J6zSOxDwmWxNn38FGVVd-D5iO50rhptYO0eyJXJo6U9JnnaWG5QOIVode2L4hOeFi3BTBMYlMQSwriGVFz7IBfF0vue26cTxGvEP8-IuwY8UAPq9YW-BdogBJGY6uIMw1KZVO1AB2O56vV69EZf-BXQ_gxWR2MS2mWf7jPWwlBBMcShY_wMayaf1HeG7vln8WzacgtPfn6-It |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GIAE-DTI%3A+Predicting+Drug-Target+Interactions+Based+on+Heterogeneous+Network+and+GIN-based+Graph+Autoencoder&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Wang%2C+Mengdi&rft.au=Lei%2C+Xiujuan&rft.au=Liu%2C+Lian&rft.au=Chen%2C+Jianrui&rft.date=2025-11-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=PP&rft_id=info:doi/10.1109%2FJBHI.2024.3458794&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |