Multi-Head Graph Attention Adversarial Autoencoder Network for Unsupervised Change Detection Using Heterogeneous Remote Sensing Images

Heterogeneous remote sensing images, acquired from different sensors, exhibit significant variations in data structure, resolution, and radiometric characteristics. These inherent heterogeneities present substantial challenges for change detection, a task that involves identifying changes in a targe...

Full description

Saved in:
Bibliographic Details
Published in:Remote sensing (Basel, Switzerland) Vol. 17; no. 15; p. 2581
Main Authors: Jia, Meng, Lou, Xiangyu, Zhao, Zhiqiang, Lu, Xiaofeng, Shi, Zhenghao
Format: Journal Article
Language:English
Published: Basel MDPI AG 24.07.2025
Subjects:
ISSN:2072-4292, 2072-4292
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Heterogeneous remote sensing images, acquired from different sensors, exhibit significant variations in data structure, resolution, and radiometric characteristics. These inherent heterogeneities present substantial challenges for change detection, a task that involves identifying changes in a target area by analyzing multi-temporal images. To address this issue, we propose the Multi-Head Graph Attention Mechanism (MHGAN), designed to achieve accurate detection of surface changes in heterogeneous remote sensing images. The MHGAN employs a bidirectional adversarial convolutional autoencoder network to reconstruct and perform style transformation of heterogeneous images. Unlike existing unidirectional translation frameworks (e.g., CycleGAN), our approach simultaneously aligns features in both domains through multi-head graph attention and dynamic kernel width estimation, effectively reducing false changes caused by sensor heterogeneity. The network training is constrained by four loss functions: reconstruction loss, code correlation loss, graph attention loss, and adversarial loss, which together guide the alignment of heterogeneous images into a unified data domain. The code correlation loss enforces consistency in feature representations at the encoding layer, while a density-based kernel width estimation method enhances the capture of both local and global changes. The graph attention loss models the relationships between features and images, improving the representation of consistent regions across bitemporal images. Additionally, adversarial loss promotes style consistency within the shared domain. Our bidirectional adversarial convolutional autoencoder simultaneously aligns features across both domains. This bilateral structure mitigates the information loss associated with one-way mappings, enabling more accurate style transformation and reducing false change detections caused by sensor heterogeneity, which represents a key advantage over existing unidirectional methods. Compared with state-of-the-art methods for heterogeneous change detection, the MHGAN demonstrates superior performance in both qualitative and quantitative evaluations across four benchmark heterogeneous remote sensing datasets.
AbstractList Heterogeneous remote sensing images, acquired from different sensors, exhibit significant variations in data structure, resolution, and radiometric characteristics. These inherent heterogeneities present substantial challenges for change detection, a task that involves identifying changes in a target area by analyzing multi-temporal images. To address this issue, we propose the Multi-Head Graph Attention Mechanism (MHGAN), designed to achieve accurate detection of surface changes in heterogeneous remote sensing images. The MHGAN employs a bidirectional adversarial convolutional autoencoder network to reconstruct and perform style transformation of heterogeneous images. Unlike existing unidirectional translation frameworks (e.g., CycleGAN), our approach simultaneously aligns features in both domains through multi-head graph attention and dynamic kernel width estimation, effectively reducing false changes caused by sensor heterogeneity. The network training is constrained by four loss functions: reconstruction loss, code correlation loss, graph attention loss, and adversarial loss, which together guide the alignment of heterogeneous images into a unified data domain. The code correlation loss enforces consistency in feature representations at the encoding layer, while a density-based kernel width estimation method enhances the capture of both local and global changes. The graph attention loss models the relationships between features and images, improving the representation of consistent regions across bitemporal images. Additionally, adversarial loss promotes style consistency within the shared domain. Our bidirectional adversarial convolutional autoencoder simultaneously aligns features across both domains. This bilateral structure mitigates the information loss associated with one-way mappings, enabling more accurate style transformation and reducing false change detections caused by sensor heterogeneity, which represents a key advantage over existing unidirectional methods. Compared with state-of-the-art methods for heterogeneous change detection, the MHGAN demonstrates superior performance in both qualitative and quantitative evaluations across four benchmark heterogeneous remote sensing datasets.
Author Jia, Meng
Lou, Xiangyu
Shi, Zhenghao
Lu, Xiaofeng
Zhao, Zhiqiang
Author_xml – sequence: 1
  givenname: Meng
  surname: Jia
  fullname: Jia, Meng
– sequence: 2
  givenname: Xiangyu
  surname: Lou
  fullname: Lou, Xiangyu
– sequence: 3
  givenname: Zhiqiang
  surname: Zhao
  fullname: Zhao, Zhiqiang
– sequence: 4
  givenname: Xiaofeng
  surname: Lu
  fullname: Lu, Xiaofeng
– sequence: 5
  givenname: Zhenghao
  orcidid: 0000-0001-5291-9455
  surname: Shi
  fullname: Shi, Zhenghao
BookMark eNpNUctuEzEUtVCRKG03fIGl7ipN8XNmvIwCNJFaKtFmbbn29XRCYgfbE9Qf6HdjEgTczX0dnXuPznt0EmIAhD5Qcs25Ih9Tph2VTPb0DTplpGONYIqd_Fe_Qxc5r0kNzqki4hS93k2bMjYLMA7fJLN7xrNSIJQxBjxze0jZpNFs8GwqEYKNDhL-CuVnTN-xjwmvQp52kPZjBofnzyYMgD9BAXtgWOUxDHhR-xQHCBCnjL_BNhbADxAOy-XWDJDP0VtvNhku_uQztPry-XG-aG7vb5bz2W1jOWOlsV3viXHKwpPvCZWGOuWFtBbEk1ScESIMId62bVWspBK9p575rgq2VoDjZ2h55HXRrPUujVuTXnQ0oz4MYhq0SWW0G9DStVy0IEC4TjjnFJVWtLJnnhBnO1W5Lo9cuxR_TJCLXscphfq-5qz6USGSVtTVEWVTzDmB_3uVEv3bNv3PNv4LWqyNRA
Cites_doi 10.1109/TGRS.2017.2739800
10.1080/01431161.2018.1448481
10.1109/TIP.2021.3093766
10.1109/IGARSS.2010.5650677
10.1007/978-3-030-30671-7
10.1109/TIP.2017.2784560
10.3390/s8031613
10.1109/JPROC.2015.2462751
10.3390/rs11202377
10.1109/TGRS.2009.2038274
10.1109/TNNLS.2016.2636227
10.1109/LGRS.2018.2868704
10.1016/j.patcog.2020.107598
10.1177/001316448104100307
10.1109/LGRS.2022.3201925
10.3390/rs11091091
10.1109/TNNLS.2022.3172183
10.1016/j.rse.2009.09.012
10.1109/TGRS.2005.857987
10.1109/TGRS.2011.2171493
10.1080/01431168908903939
10.1109/MGRS.2018.2890023
10.1109/LGRS.2019.2892432
10.1109/JSTARS.2019.2916560
10.1109/IGARSS.2015.7326153
10.1109/CVPR.2017.632
10.3390/rs15030621
10.1007/978-3-642-35289-8_3
10.1109/TGRS.2007.893568
10.1109/TIP.2004.838698
ContentType Journal Article
Copyright 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
DOA
DOI 10.3390/rs17152581
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
Materials Business File
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
ProQuest Central (New)
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_5d6346e4e4d74ddd915c46582f00dc79
10_3390_rs17152581
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c322t-c78f0ad9cebf8015a1d9f45cce4b5932004a00fc6607295948f1f2f7000cc4ed3
IEDL.DBID M7S
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001549712600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2072-4292
IngestDate Fri Oct 03 12:52:52 EDT 2025
Wed Aug 13 13:12:00 EDT 2025
Sat Nov 29 07:13:51 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-c78f0ad9cebf8015a1d9f45cce4b5932004a00fc6607295948f1f2f7000cc4ed3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5291-9455
OpenAccessLink https://www.proquest.com/docview/3239079351?pq-origsite=%requestingapplication%
PQID 3239079351
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_5d6346e4e4d74ddd915c46582f00dc79
proquest_journals_3239079351
crossref_primary_10_3390_rs17152581
PublicationCentury 2000
PublicationDate 2025-07-24
PublicationDateYYYYMMDD 2025-07-24
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-24
  day: 24
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chen (ref_22) 2011; 11
Jia (ref_42) 2022; 19
Nascimento (ref_25) 2005; 38
Luppino (ref_34) 2022; 35
Ghamisi (ref_10) 2019; 7
Luppino (ref_41) 2021; 60
Griffiths (ref_7) 2010; 114
Inglada (ref_1) 2007; 45
ref_14
Liu (ref_15) 2018; 29
ref_35
Singh (ref_21) 1989; 10
Wan (ref_12) 2019; 16
Li (ref_23) 2018; 10
ref_32
ref_39
ref_38
Sun (ref_28) 2021; 109
ref_37
Liu (ref_27) 2021; 60
Liu (ref_36) 2022; 60
Sun (ref_43) 2021; 30
Li (ref_20) 2020; 162
Niu (ref_17) 2019; 16
Wan (ref_13) 2018; 39
Liu (ref_2) 2018; 27
Prasad (ref_9) 2015; 103
Zhao (ref_16) 2017; 55
Radke (ref_4) 2005; 14
Gong (ref_3) 2016; 53
Brunner (ref_6) 2010; 48
Zhou (ref_11) 2008; 8
Zhang (ref_24) 2019; 57
Bovolo (ref_33) 2005; 43
He (ref_30) 2020; 164
Brennan (ref_40) 1981; 41
ref_8
Chen (ref_19) 2018; 9
Bovolo (ref_31) 2012; 50
ref_5
Wang (ref_26) 2017; 9
Sun (ref_29) 2021; 60
Zhang (ref_18) 2019; 12
References_xml – volume: 55
  start-page: 7066
  year: 2017
  ident: ref_16
  article-title: Discriminative feature learning for unsupervised change detection in heterogeneous images based on a coupled neural network
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2017.2739800
– volume: 39
  start-page: 3753
  year: 2018
  ident: ref_13
  article-title: Multi-sensor remote sensing image change detection based on sorted histograms
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2018.1448481
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_29
  article-title: Structure consistency-based graph for unsupervised change detection with homogeneous and heterogeneous remote sensing images
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 30
  start-page: 6277
  year: 2021
  ident: ref_43
  article-title: Iterative robust graph for unsupervised change detection of heterogeneous remote sensing images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2021.3093766
– volume: 11
  start-page: 179
  year: 2011
  ident: ref_22
  article-title: Change detection for remote sensing images: A survey
  publication-title: Int. J. Image Graph.
– ident: ref_8
  doi: 10.1109/IGARSS.2010.5650677
– volume: 9
  start-page: 997
  year: 2018
  ident: ref_19
  article-title: Robust feature alignment for heterogeneous remote sensing image change detection via cross-domain adversarial learning
  publication-title: Remote Sens. Lett.
– ident: ref_38
  doi: 10.1007/978-3-030-30671-7
– volume: 60
  start-page: 4700422
  year: 2021
  ident: ref_41
  article-title: Deep image translation with an affinity-based change prior for unsupervised multimodal change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 27
  start-page: 1822
  year: 2018
  ident: ref_2
  article-title: Change detection in heterogenous remote sensing images via homogeneous pixel transformation
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2784560
– volume: 8
  start-page: 1613
  year: 2008
  ident: ref_11
  article-title: Object-based land cover classification and change analysis in the Baltimore metropolitan area using multitemporal high resolution remote sensing data
  publication-title: Sensors
  doi: 10.3390/s8031613
– volume: 103
  start-page: 1585
  year: 2015
  ident: ref_9
  article-title: Challenges and opportunities of multimodality and data fusion in remote sensing
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2015.2462751
– ident: ref_14
  doi: 10.3390/rs11202377
– volume: 48
  start-page: 2403
  year: 2010
  ident: ref_6
  article-title: Earthquake damage assessment of buildings using VHR optical and SAR imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2038274
– volume: 29
  start-page: 545
  year: 2018
  ident: ref_15
  article-title: A deep convolutional coupling network for change detection based on heterogeneous optical and radar images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2636227
– volume: 162
  start-page: 55
  year: 2020
  ident: ref_20
  article-title: Context-aware deep learning for complex scene change detection in heterogeneous remote sensing images
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 16
  start-page: 45
  year: 2019
  ident: ref_17
  article-title: A conditional adversarial network for change detection in heterogeneous images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2018.2868704
– volume: 109
  start-page: 107598
  year: 2021
  ident: ref_28
  article-title: Nonlocal patch similarity based heterogeneous remote sensing change detection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107598
– volume: 9
  start-page: 1254
  year: 2017
  ident: ref_26
  article-title: Heterogeneous remote sensing image change detection based on transfer learning
  publication-title: Remote Sens.
– volume: 53
  start-page: 123
  year: 2016
  ident: ref_3
  article-title: A survey on change detection in synthetic aperture radar imagery
  publication-title: J. Comput. Res. Dev.
– volume: 41
  start-page: 687
  year: 1981
  ident: ref_40
  article-title: Coefficient Kappa: Some uses, misuses, and alternatives
  publication-title: Educ. Psychol. Meas.
  doi: 10.1177/001316448104100307
– volume: 10
  start-page: 831
  year: 2018
  ident: ref_23
  article-title: A review of change detection techniques for remotely sensed imagery
  publication-title: Remote Sens.
– volume: 164
  start-page: 43
  year: 2020
  ident: ref_30
  article-title: Change detection in remote sensing imagery using deep learning techniques: A survey
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 19
  start-page: 6515705
  year: 2022
  ident: ref_42
  article-title: Bipartite adversarial autoencoders with structural self-similarity for unsupervised heterogeneous remote sensing image change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2022.3201925
– ident: ref_5
  doi: 10.3390/rs11091091
– volume: 60
  start-page: 4701514
  year: 2021
  ident: ref_27
  article-title: A probabilistic model based on bipartite convolutional neural network for unsupervised change detection
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 60
  start-page: 4403413
  year: 2022
  ident: ref_36
  article-title: Unsupervised change detection from heterogeneous data based on image translation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 35
  start-page: 60
  year: 2022
  ident: ref_34
  article-title: Code-aligned autoencoders for unsupervised change detection in multimodal remote sensing images
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3172183
– volume: 114
  start-page: 426
  year: 2010
  ident: ref_7
  article-title: Mapping megacity growth with multi-sensor data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2009.09.012
– volume: 38
  start-page: 1709
  year: 2005
  ident: ref_25
  article-title: Change detection in remote sensing images using multiscale morphological processing
  publication-title: Pattern Recognit.
– volume: 43
  start-page: 2963
  year: 2005
  ident: ref_33
  article-title: A detail-preserving scale-driven approach to change detection in multitemporal SAR images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2005.857987
– volume: 57
  start-page: 9736
  year: 2019
  ident: ref_24
  article-title: Unsupervised change detection of remote sensing images based on generative adversarial networks
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 50
  start-page: 2196
  year: 2012
  ident: ref_31
  article-title: A framework for automatic and unsupervised detection of multiple changes in multitemporal images
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2171493
– volume: 10
  start-page: 989
  year: 1989
  ident: ref_21
  article-title: Digital change detection techniques using remotely-sensed data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903939
– volume: 7
  start-page: 6
  year: 2019
  ident: ref_10
  article-title: Multisource and multitemporal data fusion in remote sensing: A comprehensive review of the state of the art
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2018.2890023
– volume: 16
  start-page: 1026
  year: 2019
  ident: ref_12
  article-title: A post-classification comparison method for SAR and optical images change detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2892432
– volume: 12
  start-page: 1543
  year: 2019
  ident: ref_18
  article-title: Multi-scale convolutional neural network for remote sensing image change detection
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2019.2916560
– ident: ref_32
  doi: 10.1109/IGARSS.2015.7326153
– ident: ref_37
  doi: 10.1109/CVPR.2017.632
– ident: ref_35
  doi: 10.3390/rs15030621
– ident: ref_39
  doi: 10.1007/978-3-642-35289-8_3
– volume: 45
  start-page: 1432
  year: 2007
  ident: ref_1
  article-title: A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2007.893568
– volume: 14
  start-page: 294
  year: 2005
  ident: ref_4
  article-title: Image change detection algorithms: A systematic survey
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.838698
SSID ssj0000331904
Score 2.4042573
Snippet Heterogeneous remote sensing images, acquired from different sensors, exhibit significant variations in data structure, resolution, and radiometric...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2581
SubjectTerms Change detection
Classification
Data structures
Datasets
Deep learning
domain transformation
graph attention
Heterogeneity
heterogeneous remote sensing images
Image acquisition
Methods
Neural networks
Performance evaluation
Remote sensing
Representations
Sensors
Similarity measures
Transformations (mathematics)
unsupervised change detection
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bS9xAFB6KCPWlqK10rcqAfR12kswleVwv6wqylLYr-xYyl4M-NCubbME_4O_2zCRbV_rgi6-TwAznOge--T5CvgsDUgIA04o7JrQpmDHOMplbnSkLYKJ-yu2Nnk7z-bz4sSH1FTBhHT1wZ7ihdCoTygsvnBbOuSKRVmDbTIFzZ3V8usd1sTFMxRqcYWhx0fGRZjjXD5dNooPWT5686kCRqP-_Ohyby3iXfOpvhXTUnWaPfPD1PvnYC5TfPX4mT_GhLJugR-hVWKOjtu2QijRqKjdViCQ6WrWLQE3p_JJOO4Q3xWspndXN6iGUhcY72r0ooBe-jTismkbcAJ0EZMwCA8ovVg396dGJnv4KAHf8eP0HC0_zhczGl7_PJ6yXUGAWM7VlVufAK1dYbwB7kawSV4CQ1nphJF7dMEUqzsEqFRjEA3ULJJCCRgtaK7zLDshWvaj9V0JzVSiodJWkIIQuUqNxtpVeO6XBYJEckNO1WcuHjimjxAkjGL98Mf6AnAWL__sjsFvHBfR52fu8fMvnA3K09lfZp1xTZinuhNVGJofvscc3spMGqV-uWSqOyFa7XPljsm3_tvfN8iRG2zM9Ad0D
  priority: 102
  providerName: Directory of Open Access Journals
Title Multi-Head Graph Attention Adversarial Autoencoder Network for Unsupervised Change Detection Using Heterogeneous Remote Sensing Images
URI https://www.proquest.com/docview/3239079351
https://doaj.org/article/5d6346e4e4d74ddd915c46582f00dc79
Volume 17
WOSCitedRecordID wos001549712600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: P5Z
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PCBAR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 2072-4292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331904
  issn: 2072-4292
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELagRYIL74qlZWUJrladxI_kVG3bLVsJVlFLUeESxS_gQLKNs0hcOPK7O3ayrRASFy4-2IkU6ZsZzzifv0HoDVOOc-cckYIawqQqiFJGE55rmQntnIr9Uz6-k8tlfnlZlOOBmx9plZuYGAO1aXU4I9_PUqjOwZh4crC6IqFrVPi7OrbQuIu2g0pCEql75zdnLDQDA6NsUCXN4P39zicydPzJkz_2oSjX_1c0jlvMyaP__bjH6OGYXOLZYA1P0B3bPEX3xz7nX38-Q7_jfVuyAGDx2zCHZ30_EB5xbM3s62CQeLbu26BwaWyHlwNRHEN2iy8av16F6OKtwcPFBHxs-0jnanCkH-BFINi0YJe2XXt8ZsEWLD4PPHlYPP0O8cs_Rxcn8w9HCzJ2YiAaHL4nWuaO1qbQVjnY0nidmMIxrrVlikMGCJ5WU-q0EEGIPCjAuMSlTgIEWjNrsh201bSNfYFwLgrhalknqWNMFqmSUCJzK42QTkGsnaDXG1yq1SC4UUGhEtCrbtGboMMA2c0TQSQ7TrTdl2r0uYobkTFhmWVGMmNMkXDNIONKHaVGy2KC9jZoVqPn-uoWypf_Xt5FD9LQC5hKkrI9tNV3a_sK3dM_-m--m6Ltw_myPJvGGn8azTKMv-YwlvwzrJen78tP1z_Q8bQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1Z3LbtQwFIaPyhSpbLgjBgpYApZWE8eOkwVCA6XMqNPRCFpUVml8o12QDEkG1BfgcXhGjnNphZDYdcE2jqLI-fz7knPOD_CCKyeEc47KODCUS5VSpYymItEyirVzqvVP-TSXi0VyfJwuN-DXkAvjwyoHTWyF2pTan5HvRAx35wiTCF-vvlHvGuX_rg4WGh0W-_b8B27Z6lezXfy-Lxnbe3f4dkp7VwGqEd6Gapm4IDeptsqhPIs8NKnjQmvLlcDVDFKTB4HTceyLavtqJi50zEnUDq25NRE-9xpscg_7CDaXs4Pl54tTnSBCpAPe1UGN8I13qjqU3mMoCf-Y-VqDgL_0v53U9m79b91xG272y2cy6Xi_Axu2uAtbvZP76fk9-NlmFNMpokve-2tk0jRdSCdpzafr3A85Mlk3pa_haWxFFl0oPMH1Ozkq6vXK62dtDelSL8iubdqAtYK0ARZk6kOIShx5tlzX5INF2i356DMBsHH2FRW6vg9HV9IND2BUlIV9CCSJ09jlMg-Z41ymTMkkksJKE0uncDYZw_OBg2zVlRTJcCvmackuaRnDG4_IxR2-DHh7oay-ZL2qZMLEEY8tt9xIboxJQ6E5rimZCwKjZTqG7YGerNemOrtE59G_m5_B1vTwYJ7NZ4v9x3CDeefjQFLGt2HUVGv7BK7r781ZXT3thwGBk6tG7TfWE0nN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VgoALb9QtBSwBR2vzsOPkgNDCsuyq1WoFFFVc0sQP4NBkibNF_QP8KH4dYydphZC49cA1jqLI-eabGWdmPoDnrDScG2OoSAJFmSgzWpZKUp5KESfSmNLrp3w6EMtlenSUrbbg19AL48oqB070RK1q6c7Ix3GE2TmCiYdj05dFrKazV-vv1ClIuT-tg5xGB5F9ffYD0zf7cjHFb_0iimZvP76Z015hgEoEckulSE1QqEzq0iBV8yJUmWFcSs1KjpENIqgIAiOTxA3YdpNNTGgiI5BHpGRaxfjcK3BVYI7pyglX_PP5-U4QI7gD1k1EjfHdx40NhVMbSsM_fKCXCvjLE3j3Nrv9P2_MHbjVB9Vk0lnBXdjS1T240eu7fz27Dz99nzGdI6DJO3eNTNq2K_QkXpLaFs4QyWTT1m6yp9INWXYF8gSjenJY2c3asarVinQNGWSqW1_GVhFfdkHmrrCoRnvU9caS9xptQJMPrj8AFxcnyNv2ARxeyjY8hO2qrvQOkDTJElOIIowMYyKLSpHGgmuhEmFK9DEjeDZgIl93g0ZyTNAccvIL5IzgtYPL-R1uOLi_UDdf8p5rcq6SmCWaaaYEU0plIZcMI83IBIGSIhvB3oCkvGcsm1_AaPffy0_hOuIrP1gs9x_BzcjJIQeCRmwPtttmox_DNXnafrPNE28PBI4vG2e_AQNzUTA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-Head+Graph+Attention+Adversarial+Autoencoder+Network+for+Unsupervised+Change+Detection+Using+Heterogeneous+Remote+Sensing+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Meng%2C+Jia&rft.au=Lou+Xiangyu&rft.au=Zhao%2C+Zhiqiang&rft.au=Lu%2C+Xiaofeng&rft.date=2025-07-24&rft.pub=MDPI+AG&rft.eissn=2072-4292&rft.volume=17&rft.issue=15&rft.spage=2581&rft_id=info:doi/10.3390%2Frs17152581&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon