Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Łojasiewicz Condition

This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions. The communication channel between agents is normally constrained by limited bandwidth, and the gradient information is typically unavailable....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on cybernetics Ročník 54; číslo 10; s. 5746 - 5758
Hlavní autoři: Xu, Lei, Yi, Xinlei, Deng, Chao, Shi, Yang, Chai, Tianyou, Yang, Tao
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.10.2024
Témata:
ISSN:2168-2267, 2168-2275, 2168-2275
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions. The communication channel between agents is normally constrained by limited bandwidth, and the gradient information is typically unavailable. To overcome these limitations, we propose a quantized distributed zeroth-order algorithm, which integrates the deterministic gradient estimator, the standard uniform quantizer, and the distributed gradient tracking algorithm. We establish linear convergence to a global optimal point for the proposed algorithm by assuming Polyak-Łojasiewicz condition for the global cost function and smoothness condition for the local cost functions. Moreover, the proposed algorithm maintains linear convergence at low-data rates with a proper selection of algorithm parameters. Numerical simulations validate the theoretical results.
AbstractList This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions. The communication channel between agents is normally constrained by limited bandwidth, and the gradient information is typically unavailable. To overcome these limitations, we propose a quantized distributed zeroth-order algorithm, which integrates the deterministic gradient estimator, the standard uniform quantizer, and the distributed gradient tracking algorithm. We establish linear convergence to a global optimal point for the proposed algorithm by assuming Polyak-Łojasiewicz condition for the global cost function and smoothness condition for the local cost functions. Moreover, the proposed algorithm maintains linear convergence at low-data rates with a proper selection of algorithm parameters. Numerical simulations validate the theoretical results.This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions. The communication channel between agents is normally constrained by limited bandwidth, and the gradient information is typically unavailable. To overcome these limitations, we propose a quantized distributed zeroth-order algorithm, which integrates the deterministic gradient estimator, the standard uniform quantizer, and the distributed gradient tracking algorithm. We establish linear convergence to a global optimal point for the proposed algorithm by assuming Polyak-Łojasiewicz condition for the global cost function and smoothness condition for the local cost functions. Moreover, the proposed algorithm maintains linear convergence at low-data rates with a proper selection of algorithm parameters. Numerical simulations validate the theoretical results.
This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions. The communication channel between agents is normally constrained by limited bandwidth, and the gradient information is typically unavailable. To overcome these limitations, we propose a quantized distributed zeroth-order algorithm, which integrates the deterministic gradient estimator, the standard uniform quantizer, and the distributed gradient tracking algorithm. We establish linear convergence to a global optimal point for the proposed algorithm by assuming Polyak-Łojasiewicz condition for the global cost function and smoothness condition for the local cost functions. Moreover, the proposed algorithm maintains linear convergence at low-data rates with a proper selection of algorithm parameters. Numerical simulations validate the theoretical results.
Author Xu, Lei
Shi, Yang
Chai, Tianyou
Yang, Tao
Deng, Chao
Yi, Xinlei
Author_xml – sequence: 1
  givenname: Lei
  orcidid: 0000-0003-4753-4774
  surname: Xu
  fullname: Xu, Lei
  email: 2010345@stu.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 2
  givenname: Xinlei
  orcidid: 0000-0003-4299-0471
  surname: Yi
  fullname: Yi, Xinlei
  email: xinleiyi@mit.edu
  organization: Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, USA
– sequence: 3
  givenname: Chao
  orcidid: 0000-0002-6148-1034
  surname: Deng
  fullname: Deng, Chao
  email: dengchao_neu@126.com
  organization: Institute of Advanced Technology, Nanjing University of Posts and Telecommunications, Nanjing, China
– sequence: 4
  givenname: Yang
  orcidid: 0000-0003-1337-5322
  surname: Shi
  fullname: Shi, Yang
  email: yshi@uvic.ca
  organization: Department of Mechanical Engineering, University of Victoria, Victoria, BC, Canada
– sequence: 5
  givenname: Tianyou
  orcidid: 0000-0002-4623-1483
  surname: Chai
  fullname: Chai, Tianyou
  email: tychai@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
– sequence: 6
  givenname: Tao
  orcidid: 0000-0003-4090-8497
  surname: Yang
  fullname: Yang, Tao
  email: yangtao@mail.neu.edu.cn
  organization: State Key Laboratory of Synthetical Automation for Process Industries, Northeastern University, Shenyang, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38630570$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAURi1UREvpAyAhlCWbDP5NnGUZoCBVDEjTBWwsx7lu3Sb2YDtAR2LBw_FeJMwUIRZ4Y8s655Pu_R6iAx88IPSY4AUhuHm-Xn58saCY8gVjkjeU30NHlFSypLQWB3_eVX2ITlK6xtOR01cjH6BDJiuGRY2P0PcPo_bZbaErPkEM-apcxQ5icRZ158DnYh21uXH-sjjtL0N0-WoobIjFS5dydO2YJ_Fd8Cb4L_CtWG2yG9xWZxd8ceHnoPehv9U35c8f4VonB1-d2RbL4Ds3M4_Qfav7BCf7-xhdvH61Xr4pz1dnb5en56VhlObSCGaFAG5rXrW2tWBsI6VmnGsmSGO6umqBiIobLaSmkgDwmgrZWtp2lQB2jJ7tcjcxfB4hZTW4ZKDvtYcwJsUwJ5RNy6wn9OkeHdsBOrWJbtDxVt2tbALqHWBiSCmCVcbl3xPnqF2vCFZzP2ruR839qH0_k0n-Me_C_-c82TkOAP7iBeYVkewXz3yeQA
CODEN ITCEB8
CitedBy_id crossref_primary_10_1109_TSIPN_2025_3603740
crossref_primary_10_1080_00207179_2025_2537855
crossref_primary_10_1016_j_jfranklin_2025_108014
Cites_doi 10.1109/TPWRS.2016.2636811
10.1007/s11432-020-3275-3
10.1109/JSAC.2005.843546
10.1109/TII.2012.2219061
10.1109/TCNS.2017.2698261
10.1561/2200000051
10.1109/TAC.2021.3108501
10.1017/CBO9781139020411
10.1109/TAC.2022.3225515
10.1109/TSP.2019.2932876
10.1109/JSTSP.2011.2120593
10.1145/3128572.3140448
10.1137/16M1084316
10.1109/CDC.2008.4738860
10.1109/ALLERTON.2010.5706956
10.1109/TCNS.2020.3024321
10.1109/TAC.2022.3219289
10.1007/978-3-319-46128-1_50
10.1109/TAC.2023.3339439
10.1109/CDC51059.2022.9992989
10.1109/CCDC.2017.7978329
10.1016/j.arcontrol.2019.05.006
10.1137/130943170
10.1007/s11424-021-1231-9
10.1109/TAC.2012.2184199
10.1109/TCNS.2014.2357513
10.1109/TSP.2022.3160238
10.1016/j.automatica.2022.110353
10.1007/978-3-319-91578-4
10.1109/TAC.2020.3031018
10.1109/TAC.2016.2600597
10.1109/CDC.2015.7402509
10.1137/14096668X
10.1109/TAC.2008.2009515
10.1016/j.sysconle.2012.06.004
10.1002/rnc.1147
10.1016/j.acha.2021.12.009
10.1007/s10898-022-01164-w
10.1146/annurev-control-060117-105131
10.1137/19M1258864
10.1109/TSP.2020.2997394
10.1109/PESGM.2018.8586094
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCYB.2024.3384924
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 5758
ExternalDocumentID 38630570
10_1109_TCYB_2024_3384924
10504618
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2022YFB3305904
  funderid: 10.13039/501100012166
– fundername: National Natural Science Foundation of China
  grantid: 62133003; 61991403
  funderid: 10.13039/501100001809
– fundername: Fundamental Research Funds for the Central Universities
  grantid: N2324003-05
  funderid: 10.13039/501100012226
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-c53f55e4f746bfbfecf988a344a3519cd76be1564ca58a281ee47258bf2bd65e3
IEDL.DBID RIE
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001205843000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
2168-2275
IngestDate Sun Nov 09 10:31:20 EST 2025
Mon Jul 21 06:02:24 EDT 2025
Sat Nov 29 02:02:41 EST 2025
Tue Nov 18 21:32:53 EST 2025
Wed Aug 27 03:03:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-c53f55e4f746bfbfecf988a344a3519cd76be1564ca58a281ee47258bf2bd65e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4299-0471
0000-0002-6148-1034
0000-0003-4090-8497
0000-0003-4753-4774
0000-0002-4623-1483
0000-0003-1337-5322
PMID 38630570
PQID 3041232027
PQPubID 23479
PageCount 13
ParticipantIDs ieee_primary_10504618
crossref_citationtrail_10_1109_TCYB_2024_3384924
crossref_primary_10_1109_TCYB_2024_3384924
pubmed_primary_38630570
proquest_miscellaneous_3041232027
PublicationCentury 2000
PublicationDate 2024-10-01
PublicationDateYYYYMMDD 2024-10-01
PublicationDate_xml – month: 10
  year: 2024
  text: 2024-10-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref34
ref15
ref37
ref14
ref31
ref30
Xu (ref46) 2022
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
Fazel (ref35)
Li (ref36)
ref24
ref45
ref26
ref48
ref25
ref47
ref20
ref42
ref41
ref22
ref44
ref21
ref43
Taheri (ref19)
ref28
ref27
ref29
ref8
ref7
Agarwal (ref23)
ref9
ref4
ref3
ref6
ref5
ref40
Reisizadeh (ref18); 32
References_xml – ident: ref4
  doi: 10.1109/TPWRS.2016.2636811
– year: 2022
  ident: ref46
  article-title: Quantized distributed nonconvex optimization algorithms with linear convergence under the Polyak–Łojasiewicz condition
  publication-title: arXiv:2207.08106
– ident: ref33
  doi: 10.1007/s11432-020-3275-3
– ident: ref26
  doi: 10.1109/JSAC.2005.843546
– ident: ref5
  doi: 10.1109/TII.2012.2219061
– ident: ref15
  doi: 10.1109/TCNS.2017.2698261
– ident: ref3
  doi: 10.1561/2200000051
– ident: ref37
  doi: 10.1109/TAC.2021.3108501
– ident: ref47
  doi: 10.1017/CBO9781139020411
– ident: ref48
  doi: 10.1109/TAC.2022.3225515
– ident: ref30
  doi: 10.1109/TSP.2019.2932876
– ident: ref10
  doi: 10.1109/JSTSP.2011.2120593
– ident: ref22
  doi: 10.1145/3128572.3140448
– ident: ref14
  doi: 10.1137/16M1084316
– ident: ref27
  doi: 10.1109/CDC.2008.4738860
– ident: ref11
  doi: 10.1109/ALLERTON.2010.5706956
– ident: ref39
  doi: 10.1109/TCNS.2020.3024321
– ident: ref21
  doi: 10.1109/TAC.2022.3219289
– ident: ref42
  doi: 10.1007/978-3-319-46128-1_50
– ident: ref44
  doi: 10.1109/TAC.2023.3339439
– ident: ref34
  doi: 10.1109/CDC51059.2022.9992989
– volume: 32
  start-page: 8388
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref18
  article-title: Robust and communication-efficient collaborative learning
– ident: ref24
  doi: 10.1109/CCDC.2017.7978329
– ident: ref7
  doi: 10.1016/j.arcontrol.2019.05.006
– ident: ref9
  doi: 10.1137/130943170
– ident: ref32
  doi: 10.1007/s11424-021-1231-9
– ident: ref12
  doi: 10.1109/TAC.2012.2184199
– ident: ref17
  doi: 10.1109/TCNS.2014.2357513
– ident: ref45
  doi: 10.1109/TSP.2022.3160238
– ident: ref38
  doi: 10.1016/j.automatica.2022.110353
– ident: ref40
  doi: 10.1007/978-3-319-91578-4
– ident: ref31
  doi: 10.1109/TAC.2020.3031018
– ident: ref29
  doi: 10.1109/TAC.2016.2600597
– start-page: 1467
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref35
  article-title: Global convergence of policy gradient methods for the linear quadratic regulator
– start-page: 28
  volume-title: Proc. Annu. Conf. Comput. Learn. Theory
  ident: ref23
  article-title: Optimal algorithms for online convex optimization with multi-point bandit feedback
– ident: ref13
  doi: 10.1109/CDC.2015.7402509
– ident: ref16
  doi: 10.1137/14096668X
– ident: ref8
  doi: 10.1109/TAC.2008.2009515
– ident: ref28
  doi: 10.1016/j.sysconle.2012.06.004
– ident: ref1
  doi: 10.1002/rnc.1147
– start-page: 9324
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref19
  article-title: Quantized decentralized stochastic learning over directed graphs
– ident: ref41
  doi: 10.1016/j.acha.2021.12.009
– ident: ref43
  doi: 10.1007/s10898-022-01164-w
– ident: ref6
  doi: 10.1146/annurev-control-060117-105131
– ident: ref20
  doi: 10.1137/19M1258864
– start-page: 5569
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref36
  article-title: A simple proximal stochastic gradient method for nonsmooth nonconvex optimization
– ident: ref25
  doi: 10.1109/TSP.2020.2997394
– ident: ref2
  doi: 10.1109/PESGM.2018.8586094
SSID ssj0000816898
Score 2.4051027
Snippet This article focuses on distributed nonconvex optimization by exchanging information between agents to minimize the average of local nonconvex cost functions....
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5746
SubjectTerms Convergence
Cost function
Deep learning
Distributed algorithms
Gradient methods
Gradient tracking algorithm
linear convergence
nonconvex optimization
Quantization (signal)
uniform quantizer
zeroth-order algorithm
Title Quantized Zeroth-Order Gradient Tracking Algorithm for Distributed Nonconvex Optimization Under Polyak-Łojasiewicz Condition
URI https://ieeexplore.ieee.org/document/10504618
https://www.ncbi.nlm.nih.gov/pubmed/38630570
https://www.proquest.com/docview/3041232027
Volume 54
WOSCitedRecordID wos001205843000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZohVAvhUKhy6MyEgdASskmduwcy0LhgJYiFbRwiWxnDIFtgrJZHpU48OP4X8w42VUvReKWg51EmZnMjGfm-xh7kMfe6MT7qLSpiESifJRnpYusAAXe50YGtM93r9R0qmez_HgYVg-zMAAQms_ggC5DLb9s3JKOytDCJeGD6w22oVTWD2utD1QCg0Tgvk3wIsKwQg1VzHGcPzmZvH-K2WAiDjAnE5h0bLErqc5Q24mm-JxLChwrF4ebwe0cXf3PF77Gtof4kh_2CrHDLkF9ne0MFrzgDweY6Uc32K83S_yq1RmU_AO0DR1xEgwnf9GGLrCOoxtzdJDOD-cfm7bqPp1yjHD5M4LaJZYs3Dht6tC2_oO_xl_P6TDTyQOZEj9u5j_Nl-jP7-azWVTwvXJnfNJQiRzX7LK3R89PJi-jgYwhcmjzXeRk6qUE4ZXIrLcenM-1NqkQhjj-XKkyC4Q844zUJtFjAKESqa1PbJlJSG-yzbqpYY9x7WVmMbHMMNkTNhFGazuWKLu4RDdgkxGLV_Io3IBUToQZ8yJkLHFekDQLkmYxSHPEHq-3fO1hOv61eJdEdW5hL6URu7-SeoFGRpUTU0OzXBQpoZIR07wasVu9Oqx3r7To9gV3vcO26OF9A-Bdttm1S7jHLrtvXbVo91GTZ3o_aPJf75LvjA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BQbQXoFBgeRqJAyClZB07cY5loRSxLEVaUOES2Y5dAtsEZbM8KnHgx_G_8DjeVS9F4paDHVmZmczDM98H8CCPrRTU2qhUCYsYzWyUp6WOFDOZsTaX3KN9vh9nk4k4OMj3w7C6n4UxxvjmM7ONj_4uv2z0AktlzsI54oOLs3COM0bjflxrVVLxHBKe_Za6h8gFFlm4xxzG-ZPp6MNTlw9Stu2yMubSjg24kIjU6TsSFZ9wSp5l5fSA0zue3Uv_eeTLcDFEmGSnV4lNOGPqK7AZbHhOHgag6UdX4dfbhfuu1bEpyUfTNljkRCBO8qL1fWAdcY5MYymd7MwOm7bqPh0RF-OSZwi2izxZbuOkqX3j-g_yxv18jsJUJ_F0SmS_mf2UX6I_v5vPcl6Z75U-JqMGL8ndmi14t_t8OtqLAh1DpJ3Vd5HmieXcMJuxVFlljba5EDJhTCLLny6zVBnEntGSC0nF0BiWUS6UpapMuUmuwVrd1OYGEGF5qlxqmbp0jynKpBBqyJ3s4tI5AkUHEC_lUeiAVY6UGbPC5yxxXqA0C5RmEaQ5gMerLV97oI5_Ld5CUZ1Y2EtpAPeXUi-cmeHdiaxNs5gXCeKSIdd8NoDrvTqsdi-16OYpb70H63vT1-Ni_HLy6hZs4EH6dsDbsNa1C3MHzutvXTVv73p9_gvjUvHr
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantized+Zeroth-Order+Gradient+Tracking+Algorithm+for+Distributed+Nonconvex+Optimization+Under+Polyak-%C5%81ojasiewicz+Condition&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Xu%2C+Lei&rft.au=Yi%2C+Xinlei&rft.au=Deng%2C+Chao&rft.au=Shi%2C+Yang&rft.date=2024-10-01&rft.pub=IEEE&rft.issn=2168-2267&rft.volume=54&rft.issue=10&rft.spage=5746&rft.epage=5758&rft_id=info:doi/10.1109%2FTCYB.2024.3384924&rft_id=info%3Apmid%2F38630570&rft.externalDocID=10504618
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon