Finding Branch-Decompositions and Rank-Decompositions

We present a new algorithm that can output the rank-decomposition of width at most $k$ of a graph if such exists. For that we use an algorithm that, for an input matroid represented over a fixed finite field, outputs its branch-decomposition of width at most $k$ if such exists. This algorithm works...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 38; číslo 3; s. 1012 - 1032
Hlavní autoři: Hliněný, Petr, Oum, Sang-il
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2008
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We present a new algorithm that can output the rank-decomposition of width at most $k$ of a graph if such exists. For that we use an algorithm that, for an input matroid represented over a fixed finite field, outputs its branch-decomposition of width at most $k$ if such exists. This algorithm works also for partitioned matroids. Both of these algorithms are fixed-parameter tractable, that is, they run in time $O(n^3)$ where $n$ is the number of vertices / elements of the input, for each constant value of $k$ and any fixed finite field. The previous best algorithm for construction of a branch-decomposition or a rank-decomposition of optimal width due to Oum and Seymour [J. Combin. Theory Ser. B, 97 (2007), pp. 385-393] is not fixed-parameter tractable.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/070685920