Multiplicative Drift Analysis

We introduce multiplicative drift analysis as a suitable way to analyze the runtime of randomized search heuristics such as evolutionary algorithms. Our multiplicative version of the classical drift theorem allows easier analyses in the often encountered situation that the optimization progress is r...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Algorithmica Ročník 64; číslo 4; s. 673 - 697
Hlavní autoři: Doerr, Benjamin, Johannsen, Daniel, Winzen, Carola
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer-Verlag 01.12.2012
Springer Verlag
Témata:
ISSN:0178-4617, 1432-0541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We introduce multiplicative drift analysis as a suitable way to analyze the runtime of randomized search heuristics such as evolutionary algorithms. Our multiplicative version of the classical drift theorem allows easier analyses in the often encountered situation that the optimization progress is roughly proportional to the current distance to the optimum. To display the strength of this tool, we regard the classical problem of how the (1+1) Evolutionary Algorithm optimizes an arbitrary linear pseudo-Boolean function. Here, we first give a relatively simple proof for the fact that any linear function is optimized in expected time O ( n log n ), where n is the length of the bit string. Afterwards, we show that in fact any such function is optimized in expected time at most (1+ o (1))1.39e n ln n , again using multiplicative drift analysis. We also prove a corresponding lower bound of (1− o (1))e n ln n which actually holds for all functions with a unique global optimum. We further demonstrate how our drift theorem immediately gives natural proofs (with better constants) for the best known runtime bounds for the (1+1) Evolutionary Algorithm on combinatorial problems like finding minimum spanning trees, shortest paths, or Euler tours in graphs.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-012-9622-x