A Predictive Model for Solar Photovoltaic Power using the Levenberg-Marquardt and Bayesian Regularization Algorithms and Real-Time Weather Data

The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of advanced computer science & applications Jg. 9; H. 1
Hauptverfasser: H., Mohammad, Younis, Ola, M., Sofyan
Format: Journal Article
Sprache:Englisch
Veröffentlicht: West Yorkshire Science and Information (SAI) Organization Limited 2018
Schlagworte:
ISSN:2158-107X, 2156-5570
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photovoltaic power using the Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms and real-time weather data. The correlations between the global solar irradiance, temperature, solar photovoltaic power, and the time of the year were studied to extract the knowledge from the available historical data for the purpose of developing a real-time prediction system. The solar PV generated power data were extracted from the power plant installed on-top of the faculty of engineering building at Applied Science Private University (ASU), Amman, Jordan and weather data with real-time records were measured by ASU weather station at the same university campus. Huge amounts of training, validation, and testing experiments were carried out on the available records to optimize the Neural Networks (NN) configurations and compare the performance of the LM and BR algorithms with different sets and combinations of weather data. Promising results were obtained with an excellent realtime overall performance for next-day forecasting with a Root Mean Square Error (RMSE) value of 0.0706 using the Bayesian regularization algorithm with 28 hidden layers and all weather inputs. The Levenberg-Marquardt algorithm provided a 0.0753 RMSE using 23 hidden layers for the same set of learning inputs. This research shows that the Bayesian regularization algorithm outperforms the reported real-time prediction systems for the PV power production.
AbstractList The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photovoltaic power using the Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms and real-time weather data. The correlations between the global solar irradiance, temperature, solar photovoltaic power, and the time of the year were studied to extract the knowledge from the available historical data for the purpose of developing a real-time prediction system. The solar PV generated power data were extracted from the power plant installed on-top of the faculty of engineering building at Applied Science Private University (ASU), Amman, Jordan and weather data with real-time records were measured by ASU weather station at the same university campus. Huge amounts of training, validation, and testing experiments were carried out on the available records to optimize the Neural Networks (NN) configurations and compare the performance of the LM and BR algorithms with different sets and combinations of weather data. Promising results were obtained with an excellent realtime overall performance for next-day forecasting with a Root Mean Square Error (RMSE) value of 0.0706 using the Bayesian regularization algorithm with 28 hidden layers and all weather inputs. The Levenberg-Marquardt algorithm provided a 0.0753 RMSE using 23 hidden layers for the same set of learning inputs. This research shows that the Bayesian regularization algorithm outperforms the reported real-time prediction systems for the PV power production.
Author H., Mohammad
M., Sofyan
Younis, Ola
Author_xml – sequence: 1
  givenname: Mohammad
  surname: H.
  fullname: H., Mohammad
– sequence: 2
  givenname: Ola
  surname: Younis
  fullname: Younis, Ola
– sequence: 3
  givenname: Sofyan
  surname: M.
  fullname: M., Sofyan
BookMark eNp9kE1OwzAQhS0EElA4ARtLrFPspHGcZSh_RUVUtAh20WBPWqM0BtspKpfgyoSWFQtmMTOL995ovkOy29gGCTnhrM8HqcjPRrfFcFr0Y8Zln-WMD-QOOYh5KqI0zdjuZpcRZ9nzPjn2_pV1leSxkMkB-SroxKE2KpgV0jursaaVdXRqa3B0srDBrmwdwCg6sR_oaOtNM6dhgXSMK2xe0M2jO3DvLTgdKDSansMavYGGPuC87VLMJwRjG1rUc-tMWCz9RvaAUEczs0T6hNDlOXoBAY7IXgW1x-Pf2SOPV5ez4U00vr8eDYtxpJI4DhEMJM-0qLI0FcgzpQSTKmdaS-z-4hLSXGCeqa5prUEqGVcvIhUDlknNE5n0yOk2983Z9xZ9KF9t65ruZBn_6OI8k6JTJVuVctZ7h1X55swS3LrkrNzAL7fwyx_45RZ-58r_uJQJGwbBgan_9X4Ds-6NRg
CitedBy_id crossref_primary_10_1080_01430750_2021_1909132
crossref_primary_10_3390_en13236405
crossref_primary_10_3389_fenrg_2019_00130
ContentType Journal Article
Copyright 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2018.090148
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest One Academic
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2018_090148
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c322t-a4817d6f7556e17cc608c90dd8e26818a596e97c6e9ddda8c82fb6564078d1383
IEDL.DBID K7-
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426979200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Sun Jul 13 03:43:05 EDT 2025
Sat Nov 29 06:19:56 EST 2025
Tue Nov 18 19:51:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-a4817d6f7556e17cc608c90dd8e26818a596e97c6e9ddda8c82fb6564078d1383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2656429786?pq-origsite=%requestingapplication%
PQID 2656429786
PQPubID 5444811
ParticipantIDs proquest_journals_2656429786
crossref_primary_10_14569_IJACSA_2018_090148
crossref_citationtrail_10_14569_IJACSA_2018_090148
PublicationCentury 2000
PublicationDate 2018-00-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – year: 2018
  text: 2018-00-00
PublicationDecade 2010
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2018
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2250843
Snippet The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Bayesian analysis
Colleges & universities
Configuration management
Forecasting
Irradiance
Machine learning
Mathematical models
Meteorological data
Neural networks
Photovoltaic cells
Power plants
Prediction models
Real time
Regularization
Root-mean-square errors
Time measurement
Weather stations
Title A Predictive Model for Solar Photovoltaic Power using the Levenberg-Marquardt and Bayesian Regularization Algorithms and Real-Time Weather Data
URI https://www.proquest.com/docview/2656429786
Volume 9
WOSCitedRecordID wos000426979200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZa6IEL9IV4Fc2hxxqSsLGdEwoUVKC7REurLlwirx-AtOxCNiDxK_jLnUm8VFy49OKLncjyjGc-j8fzMfa1k1gROdxpWaQs7wyV51qIhMdeemf80EhtG7IJ2eupwSArQsBtGtIqZzaxMdR2YihGvp0g8EDbKZXYvb3jxBpFt6uBQuMtm4-TJCY9P5H8OcYSofMXTSVOdGxUxVQOQuEhhA3Z9tFxvn-WU3qX2oroOlG9dE4vbXPjcA6X_neq79ligJqQt7rxgb1x449saUbjAGFXf2JPORQV3deQ5QMiRxsBQlk4o1MvFFeTeoI2rNbXBgriVAPKlb8ERI7wk-o_UYYY7-rqjrStBj22sKcfHb3OhH5DdV-Fx56Qjy5xovXVzbQZ1keUyukRCvxpkSh817X-zH4fHvza_8EDTwM3aA5qrjsqllZ4mabCxdIYESmTRdYqh8sfK51mwmXSYGOt1cqoxA9pjRCe2BiPyMtsbjwZuxVKtPISUYV2CDs7XlmVGh9lOxpxk01TaVdZMhNQaUIRc-LSGJV0mCGplq1US5Jq2Up1lX17_ui2reHx-vCNmVjLsKGn5T-Zrr3evc4W6F9tlGaDzdXVvfvC3pmH-npabbL5vYNe0d9s9BTbbnKKbZFeYE9x1C3O_wJFSfI2
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXylMUCswBbix1XHt3fUDItFQNSaOoLSI3d7OPtFJI2sSA-iv4J_xGZvwo6qW3Hrj4Ynstrb-d-WZ3Zj6AN0nsZORppWWRdiIZ6yCMlLHoBBW8DWOrjKvEJtRgoEejbLgCf9paGE6rbG1iZajd3PIe-WZMxINsp9Ly49m5YNUoPl1tJTRqWPT8xS8K2ZYfujv0f9_G8e7no-090agKCEvgLYVJdEc5GVSaSt9R1spI2yxyTvtYkvsyaSZ9pixdnHNGWx2HMX-cnKnrUEBH496C28mWVtyrv6fE5Z5ORGRDVp0_yZFy11Q1ahodEU3JNrtf8u3DnNPJ9PuIjy_1VWd41RdUDm537X-bmgdwv6HSmNfYfwgrfvYI1lqZCmys1mP4neNwwedRbNmRxd-mSFQdDzmqx-HJvJyTjS7NqcUha8Yh1wJMkJgx9rm_FWfAiX2zOOfVVKKZOfxkLjxXn-KBn3Aeb1PMivl0QhNTnnxfVo8dEAsXXGSD32qmjTumNE_g641My1NYnc1n_hknkgVFrMl4otVJ0E6nNkTZliFe6NJUuXWIW0AUtmnSzloh04KDNUZRUaOoYBQVNYrW4d3lS2d1j5LrH99oYVQ0BmtZ_MPQ8-tvv4a7e0f7_aLfHfRewD0et96R2oDVcvHDv4Q79md5uly8qtYGwvFNI-4v4_NJGA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Predictive+Model+for+Solar+Photovoltaic+Power+using+the+Levenberg-Marquardt+and+Bayesian+Regularization+Algorithms+and+Real-Time+Weather+Data&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=H.%2C+Mohammad&rft.au=Younis%2C+Ola&rft.au=M.%2C+Sofyan&rft.date=2018&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=9&rft.issue=1&rft_id=info:doi/10.14569%2FIJACSA.2018.090148&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2018_090148
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon