A Predictive Model for Solar Photovoltaic Power using the Levenberg-Marquardt and Bayesian Regularization Algorithms and Real-Time Weather Data
The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photov...
Gespeichert in:
| Veröffentlicht in: | International journal of advanced computer science & applications Jg. 9; H. 1 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
West Yorkshire
Science and Information (SAI) Organization Limited
2018
|
| Schlagworte: | |
| ISSN: | 2158-107X, 2156-5570 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photovoltaic power using the Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms and real-time weather data. The correlations between the global solar irradiance, temperature, solar photovoltaic power, and the time of the year were studied to extract the knowledge from the available historical data for the purpose of developing a real-time prediction system. The solar PV generated power data were extracted from the power plant installed on-top of the faculty of engineering building at Applied Science Private University (ASU), Amman, Jordan and weather data with real-time records were measured by ASU weather station at the same university campus. Huge amounts of training, validation, and testing experiments were carried out on the available records to optimize the Neural Networks (NN) configurations and compare the performance of the LM and BR algorithms with different sets and combinations of weather data. Promising results were obtained with an excellent realtime overall performance for next-day forecasting with a Root Mean Square Error (RMSE) value of 0.0706 using the Bayesian regularization algorithm with 28 hidden layers and all weather inputs. The Levenberg-Marquardt algorithm provided a 0.0753 RMSE using 23 hidden layers for the same set of learning inputs. This research shows that the Bayesian regularization algorithm outperforms the reported real-time prediction systems for the PV power production. |
|---|---|
| AbstractList | The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects the control and operation of the electrical grid. An efficient forecasting model is proposed in this paper to predict the next-day solar photovoltaic power using the Levenberg-Marquardt (LM) and Bayesian Regularization (BR) algorithms and real-time weather data. The correlations between the global solar irradiance, temperature, solar photovoltaic power, and the time of the year were studied to extract the knowledge from the available historical data for the purpose of developing a real-time prediction system. The solar PV generated power data were extracted from the power plant installed on-top of the faculty of engineering building at Applied Science Private University (ASU), Amman, Jordan and weather data with real-time records were measured by ASU weather station at the same university campus. Huge amounts of training, validation, and testing experiments were carried out on the available records to optimize the Neural Networks (NN) configurations and compare the performance of the LM and BR algorithms with different sets and combinations of weather data. Promising results were obtained with an excellent realtime overall performance for next-day forecasting with a Root Mean Square Error (RMSE) value of 0.0706 using the Bayesian regularization algorithm with 28 hidden layers and all weather inputs. The Levenberg-Marquardt algorithm provided a 0.0753 RMSE using 23 hidden layers for the same set of learning inputs. This research shows that the Bayesian regularization algorithm outperforms the reported real-time prediction systems for the PV power production. |
| Author | H., Mohammad M., Sofyan Younis, Ola |
| Author_xml | – sequence: 1 givenname: Mohammad surname: H. fullname: H., Mohammad – sequence: 2 givenname: Ola surname: Younis fullname: Younis, Ola – sequence: 3 givenname: Sofyan surname: M. fullname: M., Sofyan |
| BookMark | eNp9kE1OwzAQhS0EElA4ARtLrFPspHGcZSh_RUVUtAh20WBPWqM0BtspKpfgyoSWFQtmMTOL995ovkOy29gGCTnhrM8HqcjPRrfFcFr0Y8Zln-WMD-QOOYh5KqI0zdjuZpcRZ9nzPjn2_pV1leSxkMkB-SroxKE2KpgV0jursaaVdXRqa3B0srDBrmwdwCg6sR_oaOtNM6dhgXSMK2xe0M2jO3DvLTgdKDSansMavYGGPuC87VLMJwRjG1rUc-tMWCz9RvaAUEczs0T6hNDlOXoBAY7IXgW1x-Pf2SOPV5ez4U00vr8eDYtxpJI4DhEMJM-0qLI0FcgzpQSTKmdaS-z-4hLSXGCeqa5prUEqGVcvIhUDlknNE5n0yOk2983Z9xZ9KF9t65ruZBn_6OI8k6JTJVuVctZ7h1X55swS3LrkrNzAL7fwyx_45RZ-58r_uJQJGwbBgan_9X4Ds-6NRg |
| CitedBy_id | crossref_primary_10_1080_01430750_2021_1909132 crossref_primary_10_3390_en13236405 crossref_primary_10_3389_fenrg_2019_00130 |
| ContentType | Journal Article |
| Copyright | 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2018.090148 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest One Academic ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2018_090148 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c322t-a4817d6f7556e17cc608c90dd8e26818a596e97c6e9ddda8c82fb6564078d1383 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000426979200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Jul 13 03:43:05 EDT 2025 Sat Nov 29 06:19:56 EST 2025 Tue Nov 18 19:51:09 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-a4817d6f7556e17cc608c90dd8e26818a596e97c6e9ddda8c82fb6564078d1383 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2656429786?pq-origsite=%requestingapplication% |
| PQID | 2656429786 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2656429786 crossref_primary_10_14569_IJACSA_2018_090148 crossref_citationtrail_10_14569_IJACSA_2018_090148 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-00-00 20180101 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – year: 2018 text: 2018-00-00 |
| PublicationDecade | 2010 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2018 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2250843 |
| Snippet | The stability of power production in photovoltaics (PV) power plants is an important issue for large-scale gridconnected systems. This is because it affects... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Algorithms Bayesian analysis Colleges & universities Configuration management Forecasting Irradiance Machine learning Mathematical models Meteorological data Neural networks Photovoltaic cells Power plants Prediction models Real time Regularization Root-mean-square errors Time measurement Weather stations |
| Title | A Predictive Model for Solar Photovoltaic Power using the Levenberg-Marquardt and Bayesian Regularization Algorithms and Real-Time Weather Data |
| URI | https://www.proquest.com/docview/2656429786 |
| Volume | 9 |
| WOSCitedRecordID | wos000426979200048&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELZa6IEL9IV4Fc2hxxqSsLGdEwoUVKC7REurLlwirx-AtOxCNiDxK_jLnUm8VFy49OKLncjyjGc-j8fzMfa1k1gROdxpWaQs7wyV51qIhMdeemf80EhtG7IJ2eupwSArQsBtGtIqZzaxMdR2YihGvp0g8EDbKZXYvb3jxBpFt6uBQuMtm4-TJCY9P5H8OcYSofMXTSVOdGxUxVQOQuEhhA3Z9tFxvn-WU3qX2oroOlG9dE4vbXPjcA6X_neq79ligJqQt7rxgb1x449saUbjAGFXf2JPORQV3deQ5QMiRxsBQlk4o1MvFFeTeoI2rNbXBgriVAPKlb8ERI7wk-o_UYYY7-rqjrStBj22sKcfHb3OhH5DdV-Fx56Qjy5xovXVzbQZ1keUyukRCvxpkSh817X-zH4fHvza_8EDTwM3aA5qrjsqllZ4mabCxdIYESmTRdYqh8sfK51mwmXSYGOt1cqoxA9pjRCe2BiPyMtsbjwZuxVKtPISUYV2CDs7XlmVGh9lOxpxk01TaVdZMhNQaUIRc-LSGJV0mCGplq1US5Jq2Up1lX17_ui2reHx-vCNmVjLsKGn5T-Zrr3evc4W6F9tlGaDzdXVvfvC3pmH-npabbL5vYNe0d9s9BTbbnKKbZFeYE9x1C3O_wJFSfI2 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VggQXylMUCswBbix1XHt3fUDItFQNSaOoLSI3d7OPtFJI2sSA-iv4J_xGZvwo6qW3Hrj4Ynstrb-d-WZ3Zj6AN0nsZORppWWRdiIZ6yCMlLHoBBW8DWOrjKvEJtRgoEejbLgCf9paGE6rbG1iZajd3PIe-WZMxINsp9Ly49m5YNUoPl1tJTRqWPT8xS8K2ZYfujv0f9_G8e7no-090agKCEvgLYVJdEc5GVSaSt9R1spI2yxyTvtYkvsyaSZ9pixdnHNGWx2HMX-cnKnrUEBH496C28mWVtyrv6fE5Z5ORGRDVp0_yZFy11Q1ahodEU3JNrtf8u3DnNPJ9PuIjy_1VWd41RdUDm537X-bmgdwv6HSmNfYfwgrfvYI1lqZCmys1mP4neNwwedRbNmRxd-mSFQdDzmqx-HJvJyTjS7NqcUha8Yh1wJMkJgx9rm_FWfAiX2zOOfVVKKZOfxkLjxXn-KBn3Aeb1PMivl0QhNTnnxfVo8dEAsXXGSD32qmjTumNE_g641My1NYnc1n_hknkgVFrMl4otVJ0E6nNkTZliFe6NJUuXWIW0AUtmnSzloh04KDNUZRUaOoYBQVNYrW4d3lS2d1j5LrH99oYVQ0BmtZ_MPQ8-tvv4a7e0f7_aLfHfRewD0et96R2oDVcvHDv4Q79md5uly8qtYGwvFNI-4v4_NJGA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Predictive+Model+for+Solar+Photovoltaic+Power+using+the+Levenberg-Marquardt+and+Bayesian+Regularization+Algorithms+and+Real-Time+Weather+Data&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=H.%2C+Mohammad&rft.au=Younis%2C+Ola&rft.au=M.%2C+Sofyan&rft.date=2018&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=9&rft.issue=1&rft_id=info:doi/10.14569%2FIJACSA.2018.090148&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2018_090148 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |