DC electrical properties of frozen, excised human skin

DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pharmaceutical research Ročník 7; číslo 2; s. 134
Hlavní autoři: Kasting, G B, Bowman, L A
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States 01.02.1990
Témata:
ISSN:0724-8741
On-line přístup:Zjistit podrobnosti o přístupu
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete.
AbstractList DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete.
DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete.DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete.
Author Kasting, G B
Bowman, L A
Author_xml – sequence: 1
  givenname: G B
  surname: Kasting
  fullname: Kasting, G B
  organization: Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45239-8707
– sequence: 2
  givenname: L A
  surname: Bowman
  fullname: Bowman, L A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/2308893$$D View this record in MEDLINE/PubMed
BookMark eNotjztPwzAURj0UlbYwMyF5YiJwfe34wVa1vKRKLDBHjn0jAnmUOJGAX08lOp3l6Oj7lmzW9R0xdiHgRgDK2_WdAJFbBA2gDc7YAgyqzBolTtkypQ8AsMKpOZujBGudXDC93XBqKIxDHXzD90O_p2GsKfG-4tXQ_1J3zek71Ikif59a3_H0WXdn7KTyTaLzI1fs7eH-dfOU7V4enzfrXRYk4ph5qb22KqITUGp0JkhhXMxjRKVklJVXlQ2eyEtpMaAORufKkLAgytI7XLGr_-5h2NdEaSzaOgVqGt9RP6XCOJ3nwqiDeHkUp7KlWOyHuvXDT3E8in8iclNU
CitedBy_id crossref_primary_10_1016_0169_409X_95_00081_H
crossref_primary_10_1021_acsbiomaterials_8b00953
crossref_primary_10_1002_jps_23579
crossref_primary_10_1007_s11095_010_0181_z
crossref_primary_10_1023_A_1018969713547
crossref_primary_10_1002_jat_1773
crossref_primary_10_1007_s10527_013_9330_0
crossref_primary_10_1016_j_bpj_2013_05_008
crossref_primary_10_1016_j_xphs_2020_12_020
crossref_primary_10_1002_jps_22280
crossref_primary_10_1002_1520_6017_200105_90_5_545__AID_JPS1012_3_0_CO_2_H
crossref_primary_10_1002_jps_22361
crossref_primary_10_1007_s10544_015_9967_4
crossref_primary_10_1016_0378_5173_91_90415_K
crossref_primary_10_1016_0169_409X_92_90022_I
crossref_primary_10_1016_j_jconrel_2015_02_002
crossref_primary_10_1016_j_tiv_2011_01_013
crossref_primary_10_1016_0168_3659_95_00079_8
crossref_primary_10_1016_j_addr_2014_01_007
crossref_primary_10_1023_A_1015928225089
crossref_primary_10_1016_0928_0987_94_90227_5
crossref_primary_10_1016_j_chroma_2015_07_023
crossref_primary_10_1016_j_addr_2012_04_012
crossref_primary_10_1016_S0378_5173_98_00139_2
crossref_primary_10_1023_A_1018915416930
crossref_primary_10_1109_10_301735
crossref_primary_10_1002_jps_20173
crossref_primary_10_1109_10_301734
crossref_primary_10_1023_A_1011909623019
crossref_primary_10_1016_0378_5173_94_90081_7
crossref_primary_10_1002_jps_21666
crossref_primary_10_1016_j_ces_2008_12_016
crossref_primary_10_1002_aic_690391211
crossref_primary_10_1016_j_farmac_2004_02_001
crossref_primary_10_3109_10611869609046264
crossref_primary_10_1002_jps_23086
crossref_primary_10_1016_0168_3659_93_90215_Q
crossref_primary_10_1002_jps_10177
crossref_primary_10_1002_jps_10132
crossref_primary_10_1016_0378_5173_91_90216_B
crossref_primary_10_1016_0378_5173_93_90023_9
crossref_primary_10_1016_j_ijpharm_2009_05_020
crossref_primary_10_1208_s12248_020_00457_w
crossref_primary_10_1023_A_1015898510531
crossref_primary_10_1093_annhyg_met004
crossref_primary_10_1016_j_taap_2014_09_013
crossref_primary_10_1016_0168_3659_96_01323_5
crossref_primary_10_1023_A_1018924228916
crossref_primary_10_3390_pharmaceutics13050643
crossref_primary_10_1109_10_243418
crossref_primary_10_1002_jps_2600840813
crossref_primary_10_1016_S0006_3495_98_74008_1
crossref_primary_10_1016_S0887_2333_02_00084_X
crossref_primary_10_1016_0378_5173_95_00180_Q
crossref_primary_10_1016_j_bioelechem_2016_12_004
crossref_primary_10_1016_j_taap_2004_08_016
crossref_primary_10_1111_ics_12362
crossref_primary_10_1007_s11095_021_03001_3
crossref_primary_10_1016_0169_409X_92_90023_J
crossref_primary_10_1007_s11095_013_1052_1
crossref_primary_10_1002_1520_6017_200102_90_2_202__AID_JPS11_3_0_CO_2_E
crossref_primary_10_1016_S0378_5173_97_04870_9
crossref_primary_10_1007_s13346_011_0035_1
crossref_primary_10_1016_S0169_409X_98_00062_3
crossref_primary_10_1002_jps_2600830925
crossref_primary_10_1016_0376_7388_92_80210_B
crossref_primary_10_1002_med_2610130504
crossref_primary_10_1016_j_tiv_2011_09_011
crossref_primary_10_1002_jps_10164
crossref_primary_10_1002_jps_24556
crossref_primary_10_1016_0168_3659_95_00110_7
crossref_primary_10_1007_s11095_021_03055_3
crossref_primary_10_1016_j_ijpharm_2015_02_001
crossref_primary_10_1007_s11095_012_0928_9
crossref_primary_10_1016_0168_3659_94_90031_0
crossref_primary_10_1016_S0378_5173_98_00213_0
crossref_primary_10_1021_js960479m
crossref_primary_10_1111_j_2042_7158_1992_tb03630_x
crossref_primary_10_1021_js980331y
crossref_primary_10_1016_j_ejps_2006_11_013
crossref_primary_10_1016_j_jconrel_2017_06_015
crossref_primary_10_1016_j_tiv_2004_01_003
crossref_primary_10_1016_S0378_5173_96_04681_9
crossref_primary_10_1529_biophysj_105_074609
crossref_primary_10_1002_jps_24390
crossref_primary_10_1081_CUS_120001865
crossref_primary_10_1016_j_biomaterials_2012_10_025
crossref_primary_10_1016_j_ejps_2018_09_014
crossref_primary_10_1016_j_ejps_2017_03_024
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1023/A:1015820600672
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Pharmacy, Therapeutics, & Pharmacology
ExternalDocumentID 2308893
Genre Journal Article
GroupedDBID ---
-4W
-56
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29O
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
3V.
4.4
406
408
409
40D
40E
53G
5QI
5VS
67N
67Z
6NX
78A
7RV
7X7
88E
8AO
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABLJU
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACZOJ
ADBBV
ADHHG
ADHIR
ADIMF
ADINQ
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYPR
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDYV
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKMHD
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGNMA
BKEYQ
BPHCQ
BSONS
BVXVI
CAG
CCPQU
CGR
COF
CS3
CSCUP
CUY
CVF
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
ECM
EIF
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
EX3
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IAO
IHE
IHR
IJ-
IKXTQ
IMOTQ
INH
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L7B
LAK
LLZTM
LSO
M1P
M4Y
MA-
MK0
N2Q
N9A
NAPCQ
NB0
NDZJH
NPM
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PF0
PQQKQ
PROAC
PSQYO
PT4
PT5
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WJK
WK6
WK8
WOW
YCJ
YLTOR
Z45
Z5O
Z7S
Z7U
Z7V
Z7W
Z7X
Z81
Z82
Z83
Z84
Z87
Z88
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8V
Z8W
Z91
Z92
ZGI
ZMTXR
ZOVNA
~KM
7X8
ADHKG
AGQPQ
ATHPR
ID FETCH-LOGICAL-c322t-a36a684d2910b6297c3179d5dd2443d3fa4f8caeea3382c26c76547e1801bba92
IEDL.DBID 7X8
ISICitedReferencesCount 110
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1023_A_1015820600672&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0724-8741
IngestDate Sun Nov 09 13:39:25 EST 2025
Wed Feb 19 02:35:22 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-a36a684d2910b6297c3179d5dd2443d3fa4f8caeea3382c26c76547e1801bba92
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 2308893
PQID 79655174
PQPubID 23479
ParticipantIDs proquest_miscellaneous_79655174
pubmed_primary_2308893
PublicationCentury 1900
PublicationDate 1990-02-01
PublicationDateYYYYMMDD 1990-02-01
PublicationDate_xml – month: 02
  year: 1990
  text: 1990-02-01
  day: 01
PublicationDecade 1990
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Pharmaceutical research
PublicationTitleAlternate Pharm Res
PublicationYear 1990
SSID ssj0008194
Score 1.6449025
Snippet DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 134
SubjectTerms Diffusion
Electrophysiology
Galvanic Skin Response
Humans
In Vitro Techniques
Skin Absorption
Skin Physiological Phenomena
Sodium - pharmacokinetics
Sodium Radioisotopes
Title DC electrical properties of frozen, excised human skin
URI https://www.ncbi.nlm.nih.gov/pubmed/2308893
https://www.proquest.com/docview/79655174
Volume 7
WOSCitedRecordID wos10_1023_A_1015820600672&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED0VysDCd0X59IA6NUJxHCdGSAgVKhaqDEXqFtmOLVVISWkKovx6zkmjsiAGlmyOrPOd753Pfg_gSohQSxEwLHJY6CH-V56QhnvKtzLUhlElWSU2EY1G8WQikhbcNm9h3LXKZk-sNuqs0O6M_DoSPHSsynezN89pRrne6kpAYwPaAQIZ59PRZM0VjrmuIo-KKMOYZ_4PYh95g54YOuryqhX5O7qsssxw93_z24OdFbok97U77EPL5AfQS2p66mWfjNevrco-6ZFkTVy9PAT-MCC1LI5bOTJz5_RzR7hKCkvsvPgyeZ-YT6fDkZFK3I-Ur9P8CF6Gj-PBk7fSVfA0hu_CkwGXPGYZRaigOBWRRhAhsjDLMNcHWWAls7GWxkisX6mmXEdOotj4mM2UkoJ2YDMvcnMMhNnIN8Iw39eKaUkVjmQOYkn8l5W2C5eNtVL0W9eMkLkp3su0sVcXOrXB01lNr5FiURQjijr5c-gpbPuYTOs71GfQthiw5hy29MdiWs4vKm_A7yh5_gbNIL7G
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC+electrical+properties+of+frozen%2C+excised+human+skin&rft.jtitle=Pharmaceutical+research&rft.au=Kasting%2C+G+B&rft.au=Bowman%2C+L+A&rft.date=1990-02-01&rft.issn=0724-8741&rft.volume=7&rft.issue=2&rft.spage=134&rft_id=info:doi/10.1023%2FA%3A1015820600672&rft_id=info%3Apmid%2F2308893&rft_id=info%3Apmid%2F2308893&rft.externalDocID=2308893
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon