DC electrical properties of frozen, excised human skin
DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on...
Uloženo v:
| Vydáno v: | Pharmaceutical research Ročník 7; číslo 2; s. 134 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
01.02.1990
|
| Témata: | |
| ISSN: | 0724-8741 |
| On-line přístup: | Zjistit podrobnosti o přístupu |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete. |
|---|---|
| AbstractList | DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete. DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete.DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four terminal potentiometric method and diffusion cells of our own design. About three-fourths of the skin samples were deemed suitable for study on the basis of their high resistivities and similar j-V characteristics. Most of these samples yielded sodium ion permeability coefficients less than or equal to those reported for human skin in vivo. The current-voltage relationship in these tissues was time dependent, highly nonlinear, and slightly asymmetric with respect to the sign of the applied potential. Skin resistance decreased as current or voltage increased. For current densities less than 15 microA/cm2 and exposure times of 10-20 min, this decrease was almost completely reversible; at higher current densities, both reversible and irreversible effects were observed. The overall dependence of current on voltage was nearly exponential and was satisfactorily described by an equation of the form j approximately sinh V. Diffusion potentials, sodium ion membrane transference numbers, and sodium ion flux enhancement factors during iontophoresis were measured for skin immersed both in normal saline solutions and in saline solutions of differing concentrations. The sign of the diffusion potentials and the value of the sodium ion transference number (0.51 in normal saline at pH 7.4) indicated a weak permselectivity of the skin for transport of sodium ion versus chloride. At a current density of 71 microA/cm2 and transmembrane potentials in the range of 1.1-1.6 V, the flux enhancement for sodium ion was three to five times greater than that predicted for an uncharged homogeneous membrane according to electrodiffusion theory. For transmembrane potentials less than 0.17 V, agreement of this theory with the data was better but still incomplete. |
| Author | Kasting, G B Bowman, L A |
| Author_xml | – sequence: 1 givenname: G B surname: Kasting fullname: Kasting, G B organization: Procter & Gamble Company, Miami Valley Laboratories, Cincinnati, Ohio 45239-8707 – sequence: 2 givenname: L A surname: Bowman fullname: Bowman, L A |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/2308893$$D View this record in MEDLINE/PubMed |
| BookMark | eNotjztPwzAURj0UlbYwMyF5YiJwfe34wVa1vKRKLDBHjn0jAnmUOJGAX08lOp3l6Oj7lmzW9R0xdiHgRgDK2_WdAJFbBA2gDc7YAgyqzBolTtkypQ8AsMKpOZujBGudXDC93XBqKIxDHXzD90O_p2GsKfG-4tXQ_1J3zek71Ikif59a3_H0WXdn7KTyTaLzI1fs7eH-dfOU7V4enzfrXRYk4ph5qb22KqITUGp0JkhhXMxjRKVklJVXlQ2eyEtpMaAORufKkLAgytI7XLGr_-5h2NdEaSzaOgVqGt9RP6XCOJ3nwqiDeHkUp7KlWOyHuvXDT3E8in8iclNU |
| CitedBy_id | crossref_primary_10_1016_0169_409X_95_00081_H crossref_primary_10_1021_acsbiomaterials_8b00953 crossref_primary_10_1002_jps_23579 crossref_primary_10_1007_s11095_010_0181_z crossref_primary_10_1023_A_1018969713547 crossref_primary_10_1002_jat_1773 crossref_primary_10_1007_s10527_013_9330_0 crossref_primary_10_1016_j_bpj_2013_05_008 crossref_primary_10_1016_j_xphs_2020_12_020 crossref_primary_10_1002_jps_22280 crossref_primary_10_1002_1520_6017_200105_90_5_545__AID_JPS1012_3_0_CO_2_H crossref_primary_10_1002_jps_22361 crossref_primary_10_1007_s10544_015_9967_4 crossref_primary_10_1016_0378_5173_91_90415_K crossref_primary_10_1016_0169_409X_92_90022_I crossref_primary_10_1016_j_jconrel_2015_02_002 crossref_primary_10_1016_j_tiv_2011_01_013 crossref_primary_10_1016_0168_3659_95_00079_8 crossref_primary_10_1016_j_addr_2014_01_007 crossref_primary_10_1023_A_1015928225089 crossref_primary_10_1016_0928_0987_94_90227_5 crossref_primary_10_1016_j_chroma_2015_07_023 crossref_primary_10_1016_j_addr_2012_04_012 crossref_primary_10_1016_S0378_5173_98_00139_2 crossref_primary_10_1023_A_1018915416930 crossref_primary_10_1109_10_301735 crossref_primary_10_1002_jps_20173 crossref_primary_10_1109_10_301734 crossref_primary_10_1023_A_1011909623019 crossref_primary_10_1016_0378_5173_94_90081_7 crossref_primary_10_1002_jps_21666 crossref_primary_10_1016_j_ces_2008_12_016 crossref_primary_10_1002_aic_690391211 crossref_primary_10_1016_j_farmac_2004_02_001 crossref_primary_10_3109_10611869609046264 crossref_primary_10_1002_jps_23086 crossref_primary_10_1016_0168_3659_93_90215_Q crossref_primary_10_1002_jps_10177 crossref_primary_10_1002_jps_10132 crossref_primary_10_1016_0378_5173_91_90216_B crossref_primary_10_1016_0378_5173_93_90023_9 crossref_primary_10_1016_j_ijpharm_2009_05_020 crossref_primary_10_1208_s12248_020_00457_w crossref_primary_10_1023_A_1015898510531 crossref_primary_10_1093_annhyg_met004 crossref_primary_10_1016_j_taap_2014_09_013 crossref_primary_10_1016_0168_3659_96_01323_5 crossref_primary_10_1023_A_1018924228916 crossref_primary_10_3390_pharmaceutics13050643 crossref_primary_10_1109_10_243418 crossref_primary_10_1002_jps_2600840813 crossref_primary_10_1016_S0006_3495_98_74008_1 crossref_primary_10_1016_S0887_2333_02_00084_X crossref_primary_10_1016_0378_5173_95_00180_Q crossref_primary_10_1016_j_bioelechem_2016_12_004 crossref_primary_10_1016_j_taap_2004_08_016 crossref_primary_10_1111_ics_12362 crossref_primary_10_1007_s11095_021_03001_3 crossref_primary_10_1016_0169_409X_92_90023_J crossref_primary_10_1007_s11095_013_1052_1 crossref_primary_10_1002_1520_6017_200102_90_2_202__AID_JPS11_3_0_CO_2_E crossref_primary_10_1016_S0378_5173_97_04870_9 crossref_primary_10_1007_s13346_011_0035_1 crossref_primary_10_1016_S0169_409X_98_00062_3 crossref_primary_10_1002_jps_2600830925 crossref_primary_10_1016_0376_7388_92_80210_B crossref_primary_10_1002_med_2610130504 crossref_primary_10_1016_j_tiv_2011_09_011 crossref_primary_10_1002_jps_10164 crossref_primary_10_1002_jps_24556 crossref_primary_10_1016_0168_3659_95_00110_7 crossref_primary_10_1007_s11095_021_03055_3 crossref_primary_10_1016_j_ijpharm_2015_02_001 crossref_primary_10_1007_s11095_012_0928_9 crossref_primary_10_1016_0168_3659_94_90031_0 crossref_primary_10_1016_S0378_5173_98_00213_0 crossref_primary_10_1021_js960479m crossref_primary_10_1111_j_2042_7158_1992_tb03630_x crossref_primary_10_1021_js980331y crossref_primary_10_1016_j_ejps_2006_11_013 crossref_primary_10_1016_j_jconrel_2017_06_015 crossref_primary_10_1016_j_tiv_2004_01_003 crossref_primary_10_1016_S0378_5173_96_04681_9 crossref_primary_10_1529_biophysj_105_074609 crossref_primary_10_1002_jps_24390 crossref_primary_10_1081_CUS_120001865 crossref_primary_10_1016_j_biomaterials_2012_10_025 crossref_primary_10_1016_j_ejps_2018_09_014 crossref_primary_10_1016_j_ejps_2017_03_024 |
| ContentType | Journal Article |
| DBID | CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1023/A:1015820600672 |
| DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | no_fulltext_linktorsrc |
| Discipline | Pharmacy, Therapeutics, & Pharmacology |
| ExternalDocumentID | 2308893 |
| Genre | Journal Article |
| GroupedDBID | --- -4W -56 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29O 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3SX 3V. 4.4 406 408 409 40D 40E 53G 5QI 5VS 67N 67Z 6NX 78A 7RV 7X7 88E 8AO 8FI 8FJ 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANXM AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABPLI ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACZOJ ADBBV ADHHG ADHIR ADIMF ADINQ ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYPR ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFDYV AFEXP AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ AKMHD ALIPV ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AZFZN B-. BA0 BBWZM BDATZ BENPR BGNMA BKEYQ BPHCQ BSONS BVXVI CAG CCPQU CGR COF CS3 CSCUP CUY CVF DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS ECM EIF EIOEI EJD EMOBN EN4 EPAXT ESBYG EX3 F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC FYUFA G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ I09 IAO IHE IHR IJ- IKXTQ IMOTQ INH ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW KPH L7B LAK LLZTM LSO M1P M4Y MA- MK0 N2Q N9A NAPCQ NB0 NDZJH NPM NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P PF0 PQQKQ PROAC PSQYO PT4 PT5 Q2X QOK QOR QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RRX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3A S3B SAP SBL SBY SCLPG SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZN T13 T16 TEORI TSG TSK TSV TUC U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WJK WK6 WK8 WOW YCJ YLTOR Z45 Z5O Z7S Z7U Z7V Z7W Z7X Z81 Z82 Z83 Z84 Z87 Z88 Z8N Z8O Z8P Z8Q Z8R Z8V Z8W Z91 Z92 ZGI ZMTXR ZOVNA ~KM 7X8 ADHKG AGQPQ ATHPR |
| ID | FETCH-LOGICAL-c322t-a36a684d2910b6297c3179d5dd2443d3fa4f8caeea3382c26c76547e1801bba92 |
| IEDL.DBID | 7X8 |
| ISICitedReferencesCount | 110 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=10_1023_A_1015820600672&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0724-8741 |
| IngestDate | Sun Nov 09 13:39:25 EST 2025 Wed Feb 19 02:35:22 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-a36a684d2910b6297c3179d5dd2443d3fa4f8caeea3382c26c76547e1801bba92 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 2308893 |
| PQID | 79655174 |
| PQPubID | 23479 |
| ParticipantIDs | proquest_miscellaneous_79655174 pubmed_primary_2308893 |
| PublicationCentury | 1900 |
| PublicationDate | 1990-02-01 |
| PublicationDateYYYYMMDD | 1990-02-01 |
| PublicationDate_xml | – month: 02 year: 1990 text: 1990-02-01 day: 01 |
| PublicationDecade | 1990 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Pharmaceutical research |
| PublicationTitleAlternate | Pharm Res |
| PublicationYear | 1990 |
| SSID | ssj0008194 |
| Score | 1.6449025 |
| Snippet | DC current-voltage relationships and sodium ion transport measurements for human allograft skin immersed in saline buffers have been determined using a four... |
| SourceID | proquest pubmed |
| SourceType | Aggregation Database Index Database |
| StartPage | 134 |
| SubjectTerms | Diffusion Electrophysiology Galvanic Skin Response Humans In Vitro Techniques Skin Absorption Skin Physiological Phenomena Sodium - pharmacokinetics Sodium Radioisotopes |
| Title | DC electrical properties of frozen, excised human skin |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/2308893 https://www.proquest.com/docview/79655174 |
| Volume | 7 |
| WOSCitedRecordID | wos10_1023_A_1015820600672&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED0VysDCd0X59IA6NUJxHCdGSAgVKhaqDEXqFtmOLVVISWkKovx6zkmjsiAGlmyOrPOd753Pfg_gSohQSxEwLHJY6CH-V56QhnvKtzLUhlElWSU2EY1G8WQikhbcNm9h3LXKZk-sNuqs0O6M_DoSPHSsynezN89pRrne6kpAYwPaAQIZ59PRZM0VjrmuIo-KKMOYZ_4PYh95g54YOuryqhX5O7qsssxw93_z24OdFbok97U77EPL5AfQS2p66mWfjNevrco-6ZFkTVy9PAT-MCC1LI5bOTJz5_RzR7hKCkvsvPgyeZ-YT6fDkZFK3I-Ur9P8CF6Gj-PBk7fSVfA0hu_CkwGXPGYZRaigOBWRRhAhsjDLMNcHWWAls7GWxkisX6mmXEdOotj4mM2UkoJ2YDMvcnMMhNnIN8Iw39eKaUkVjmQOYkn8l5W2C5eNtVL0W9eMkLkp3su0sVcXOrXB01lNr5FiURQjijr5c-gpbPuYTOs71GfQthiw5hy29MdiWs4vKm_A7yh5_gbNIL7G |
| linkProvider | ProQuest |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DC+electrical+properties+of+frozen%2C+excised+human+skin&rft.jtitle=Pharmaceutical+research&rft.au=Kasting%2C+G+B&rft.au=Bowman%2C+L+A&rft.date=1990-02-01&rft.issn=0724-8741&rft.volume=7&rft.issue=2&rft.spage=134&rft_id=info:doi/10.1023%2FA%3A1015820600672&rft_id=info%3Apmid%2F2308893&rft_id=info%3Apmid%2F2308893&rft.externalDocID=2308893 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0724-8741&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0724-8741&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0724-8741&client=summon |