Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques
The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit...
Uložené v:
| Vydané v: | Electronics (Basel) Ročník 10; číslo 22; s. 2810 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.11.2021
|
| Predmet: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit content. Machine learning has wide applications in text classification, and researchers are shifting towards using deep neural networks in detecting cyberbullying due to the several advantages they have over traditional machine learning algorithms. This paper proposes a novel neural network framework with parameter optimization and an algorithmic comparative study of eleven classification methods: four traditional machine learning and seven shallow neural networks on two real world cyberbullying datasets. In addition, this paper also examines the effect of feature extraction and word-embedding-techniques-based natural language processing on algorithmic performance. Key observations from this study show that bidirectional neural networks and attention models provide high classification results. Logistic Regression was observed to be the best among the traditional machine learning classifiers used. Term Frequency-Inverse Document Frequency (TF-IDF) demonstrates consistently high accuracies with traditional machine learning techniques. Global Vectors (GloVe) perform better with neural network models. Bi-GRU and Bi-LSTM worked best amongst the neural networks used. The extensive experiments performed on the two datasets establish the importance of this work by comparing eleven classification methods and seven feature extraction techniques. Our proposed shallow neural networks outperform existing state-of-the-art approaches for cyberbullying detection, with accuracy and F1-scores as high as ~95% and ~98%, respectively. |
|---|---|
| AbstractList | The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit content. Machine learning has wide applications in text classification, and researchers are shifting towards using deep neural networks in detecting cyberbullying due to the several advantages they have over traditional machine learning algorithms. This paper proposes a novel neural network framework with parameter optimization and an algorithmic comparative study of eleven classification methods: four traditional machine learning and seven shallow neural networks on two real world cyberbullying datasets. In addition, this paper also examines the effect of feature extraction and word-embedding-techniques-based natural language processing on algorithmic performance. Key observations from this study show that bidirectional neural networks and attention models provide high classification results. Logistic Regression was observed to be the best among the traditional machine learning classifiers used. Term Frequency-Inverse Document Frequency (TF-IDF) demonstrates consistently high accuracies with traditional machine learning techniques. Global Vectors (GloVe) perform better with neural network models. Bi-GRU and Bi-LSTM worked best amongst the neural networks used. The extensive experiments performed on the two datasets establish the importance of this work by comparing eleven classification methods and seven feature extraction techniques. Our proposed shallow neural networks outperform existing state-of-the-art approaches for cyberbullying detection, with accuracy and F1-scores as high as ~95% and ~98%, respectively. |
| Author | Narayan, Bhuva Bharathy, Gnana Agarwal, Ayush Prasad, Mukesh Raj, Chahat |
| Author_xml | – sequence: 1 givenname: Chahat orcidid: 0000-0003-0083-6812 surname: Raj fullname: Raj, Chahat – sequence: 2 givenname: Ayush surname: Agarwal fullname: Agarwal, Ayush – sequence: 3 givenname: Gnana orcidid: 0000-0001-8384-9509 surname: Bharathy fullname: Bharathy, Gnana – sequence: 4 givenname: Bhuva orcidid: 0000-0001-8852-5589 surname: Narayan fullname: Narayan, Bhuva – sequence: 5 givenname: Mukesh orcidid: 0000-0002-7745-9667 surname: Prasad fullname: Prasad, Mukesh |
| BookMark | eNp9UMlOwzAQtVCRKKVfwMUS54CXtIm5QVmKlAKHco5sZ9y6BLvYySF_T6JyQAgxlxlp3qL3TtHIeQcInVNyybkgV1CDboJ3VkdKGGM5JUdozEgmEsEEG_24T9A0xh3pR1CeczJG74tOQVBtXXfWbfAdNL2Y9e4aLzsVbIVXvoI64lsZocLe4ZXUW-sAFyCDGyjSVfhZNm2QNS6k27RyA_g1eA0xDv816K2zny3EM3RsZB1h-r0n6O3hfr1YJsXL49Pipkg0Z6xJJKOG5twIk-bKEEN0H0nPqBBKCMbNnM6UVkRBrjQoPktTmaYCqOrTZyLN-ARdHHT3wQ--TbnzbXC9ZcnmhBGepfMBJQ4oHXyMAUypbSOH7E2Qti4pKYd6yz_q7bn8F3cf7IcM3b-sL2VehNY |
| CitedBy_id | crossref_primary_10_1007_s42380_024_00282_1 crossref_primary_10_3390_s24123875 crossref_primary_10_3390_s22239319 crossref_primary_10_1007_s41870_024_02350_7 crossref_primary_10_3390_sym17081310 crossref_primary_10_3389_frai_2024_1269366 crossref_primary_10_3390_fi15050179 crossref_primary_10_1007_s11042_024_18452_0 crossref_primary_10_3390_computers14060239 crossref_primary_10_3390_s22176468 crossref_primary_10_1007_s11042_024_19031_z crossref_primary_10_1080_08874417_2022_2155267 crossref_primary_10_7717_peerj_cs_1617 crossref_primary_10_1016_j_jss_2025_112435 crossref_primary_10_3390_app13179992 crossref_primary_10_7717_peerj_cs_2942 crossref_primary_10_26634_jip_9_4_19138 crossref_primary_10_1016_j_eswa_2023_122644 crossref_primary_10_3390_mca30040091 crossref_primary_10_2478_jsiot_2023_0020 crossref_primary_10_3390_app142311471 |
| Cites_doi | 10.1145/361219.361220 10.18653/v1/W17-4209 10.1002/cpe.5627 10.18653/v1/W17-3004 10.1007/978-3-319-92639-1_47 10.1109/78.650093 10.1145/2740908.2742760 10.18653/v1/E17-2068 10.1162/neco.1997.9.8.1735 10.1142/S0218488598000094 10.1145/2872427.2883062 10.3115/v1/D14-1179 10.1162/tacl_a_00051 10.18653/v1/W19-3515 10.1109/ICACCS.2019.8728378 10.1145/3038912.3052591 10.3115/v1/P14-1062 10.18653/v1/S19-2100 10.1109/ICMLA.2016.0132 10.1109/eStream.2019.8732167 10.1109/ICCMC.2019.8819734 10.1609/aaai.v27i1.8539 10.1109/WiSPNET.2016.7566545 10.1109/ICMLA.2011.152 10.1609/icwsm.v11i1.14955 10.32614/CRAN.package.xgboost 10.1162/tacl_a_00143 10.1145/3041021.3054223 10.18653/v1/N16-1018 10.1007/978-3-540-74958-5_35 10.3390/fi12110187 10.1609/icwsm.v13i01.3215 10.1007/978-3-319-73706-5_15 10.18653/v1/N16-2013 10.3115/v1/D14-1181 10.1001/jamapediatrics.2013.3343 10.3115/v1/D14-1162 10.1109/SIEDS.2019.8735592 10.1162/tacl_a_00063 10.1145/2939672.2939785 10.18653/v1/W17-1101 10.1007/978-3-319-76941-7_11 10.1007/978-3-030-63823-8_14 10.1016/j.chb.2009.11.014 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics10222810 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics10222810 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c322t-a21f183f9f48bf0f0c281c5199b9923f615bcb0be8bceb3544a449e1b10279473 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 34 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725719500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 06:19:17 EST 2025 Sat Nov 29 07:12:39 EST 2025 Tue Nov 18 22:54:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 22 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-a21f183f9f48bf0f0c281c5199b9923f615bcb0be8bceb3544a449e1b10279473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8384-9509 0000-0002-7745-9667 0000-0001-8852-5589 0000-0003-0083-6812 |
| OpenAccessLink | https://www.proquest.com/docview/2602037467?pq-origsite=%requestingapplication% |
| PQID | 2602037467 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2602037467 crossref_citationtrail_10_3390_electronics10222810 crossref_primary_10_3390_electronics10222810 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-01 |
| PublicationDateYYYYMMDD | 2021-11-01 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Hochreiter (ref_52) 1997; 9 ref_14 ref_58 ref_57 ref_12 ref_56 ref_11 ref_55 ref_10 ref_51 ref_18 ref_17 ref_16 ref_15 Schuster (ref_54) 1997; 45 Wieting (ref_42) 2015; 3 ref_24 ref_23 ref_22 ref_21 ref_20 Bojanowski (ref_39) 2017; 5 Sulzmann (ref_48) 2007; 4701 Sarkar (ref_49) 2015; 8 ref_29 ref_28 ref_27 ref_26 Moreno (ref_1) 2014; 168 ref_35 ref_34 ref_33 ref_32 ref_31 ref_30 Tokunaga (ref_25) 2010; 26 ref_38 Salton (ref_36) 1975; 18 Hochreiter (ref_53) 1998; 6 ref_47 ref_46 Qaiser (ref_19) 2018; 181 ref_44 ref_43 ref_41 ref_40 Shi (ref_37) 2009; 29 ref_3 ref_2 ref_9 ref_8 Lu (ref_13) 2020; 32 ref_5 Leviant (ref_45) 2017; 5 ref_4 ref_7 ref_6 |
| References_xml | – volume: 18 start-page: 613 year: 1975 ident: ref_36 article-title: A vector space model for automatic indexing publication-title: Commun. ACM doi: 10.1145/361219.361220 – ident: ref_4 doi: 10.18653/v1/W17-4209 – volume: 32 start-page: e5627 year: 2020 ident: ref_13 article-title: Cyberbullying detection in social media text based on character-level convolutional neural network with shortcuts publication-title: Concurr. Comput. Pr. Exp. doi: 10.1002/cpe.5627 – ident: ref_33 doi: 10.18653/v1/W17-3004 – ident: ref_26 – ident: ref_2 doi: 10.1007/978-3-319-92639-1_47 – volume: 45 start-page: 2673 year: 1997 ident: ref_54 article-title: Bidirectional recurrent neural networks publication-title: IEEE Trans. Signal Process. doi: 10.1109/78.650093 – ident: ref_6 doi: 10.1145/2740908.2742760 – ident: ref_40 doi: 10.18653/v1/E17-2068 – volume: 9 start-page: 1735 year: 1997 ident: ref_52 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 6 start-page: 107 year: 1998 ident: ref_53 article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst. doi: 10.1142/S0218488598000094 – ident: ref_7 doi: 10.1145/2872427.2883062 – ident: ref_55 doi: 10.3115/v1/D14-1179 – volume: 5 start-page: 135 year: 2017 ident: ref_39 article-title: Enriching Word Vectors with Subword Information publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00051 – ident: ref_58 doi: 10.18653/v1/W19-3515 – ident: ref_34 doi: 10.1109/ICACCS.2019.8728378 – ident: ref_17 doi: 10.1145/3038912.3052591 – ident: ref_51 doi: 10.3115/v1/P14-1062 – ident: ref_29 doi: 10.18653/v1/S19-2100 – ident: ref_14 doi: 10.1109/ICMLA.2016.0132 – ident: ref_22 doi: 10.1109/eStream.2019.8732167 – ident: ref_32 doi: 10.1109/ICCMC.2019.8819734 – ident: ref_23 doi: 10.1609/aaai.v27i1.8539 – ident: ref_31 – ident: ref_56 – ident: ref_21 doi: 10.1109/WiSPNET.2016.7566545 – ident: ref_16 doi: 10.1109/ICMLA.2011.152 – volume: 8 start-page: 33 year: 2015 ident: ref_49 article-title: Text Classification using Support Vector Machine Anurag publication-title: Int. J. Eng. Sci. Invent. – ident: ref_5 doi: 10.1609/icwsm.v11i1.14955 – ident: ref_41 – ident: ref_46 doi: 10.32614/CRAN.package.xgboost – volume: 3 start-page: 345 year: 2015 ident: ref_42 article-title: From Paraphrase Database to Compositional Paraphrase Model and Back publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00143 – volume: 29 start-page: 167 year: 2009 ident: ref_37 article-title: Study of TFIDF algorithm publication-title: J. Comput. Appl. – ident: ref_20 – ident: ref_11 doi: 10.1145/3041021.3054223 – ident: ref_28 – ident: ref_44 doi: 10.18653/v1/N16-1018 – volume: 181 start-page: 25 year: 2018 ident: ref_19 article-title: Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents publication-title: Int. J. Comput. Appl. – volume: 4701 start-page: 371 year: 2007 ident: ref_48 article-title: On Pairwise Naive Bayes Classifiers publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-540-74958-5_35 – ident: ref_3 – ident: ref_24 – ident: ref_8 doi: 10.3390/fi12110187 – ident: ref_30 doi: 10.1609/icwsm.v13i01.3215 – ident: ref_57 doi: 10.1007/978-3-319-73706-5_15 – ident: ref_10 doi: 10.18653/v1/N16-2013 – ident: ref_12 doi: 10.3115/v1/D14-1181 – volume: 168 start-page: 500 year: 2014 ident: ref_1 article-title: Cyberbullying publication-title: JAMA Pediatrics doi: 10.1001/jamapediatrics.2013.3343 – ident: ref_38 doi: 10.3115/v1/D14-1162 – ident: ref_50 – ident: ref_9 doi: 10.1109/SIEDS.2019.8735592 – volume: 5 start-page: 309 year: 2017 ident: ref_45 article-title: Semantic Specialization of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints publication-title: Trans. Assoc. Comput. Linguist. doi: 10.1162/tacl_a_00063 – ident: ref_47 doi: 10.1145/2939672.2939785 – ident: ref_18 doi: 10.18653/v1/W17-1101 – ident: ref_15 – ident: ref_27 doi: 10.1007/978-3-319-76941-7_11 – ident: ref_43 – ident: ref_35 doi: 10.1007/978-3-030-63823-8_14 – volume: 26 start-page: 277 year: 2010 ident: ref_25 article-title: Following you home from school: A critical review and synthesis of research on cyberbullying victimization publication-title: Comput. Hum. Behav. doi: 10.1016/j.chb.2009.11.014 |
| SSID | ssj0000913830 |
| Score | 2.5327904 |
| Snippet | The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2810 |
| SubjectTerms | Algorithms Artificial neural networks Bullying Classification Comparative studies Cyberbullying Datasets Feature extraction Hate speech Machine learning Natural language processing Neural networks Optimization Social networks User generated content |
| Title | Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques |
| URI | https://www.proquest.com/docview/2602037467 |
| Volume | 10 |
| WOSCitedRecordID | wos000725719500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-KbHDxato_sNvEiPlZWcEsRhdVLadJExNJVWwUv_nYn3dRVEC9eemgaKDOZZGYy830A-0GaBUFKhdPhlDpUeanDlM-c0NCaC62o1jXO7GUYRWw45LFNuJW2rLLZE-uNOhtJkyNvo9_tG6yUbnj09OwY1ihzu2opNKZhxiCV0RbMnPSi-Oory2JQL1ngjuGGAozv2xN2mbIOdpjpnf1-JP3cketj5nzxvz-4BAvWwSTH4xWxDFOqWIH5b7CDq_B4-i6MNPPc9DiRM1XV9VjFIem_mwYuYgjS8pKc4AmXkVFBBnXFpSIWjPWepEVGorSG7CCXNuNJbM-BGb9ukGHLNbg5712f9h1LuuBItO3KSX1Po5lrrikT2tWuRBFJ9PO44OgMavSAhBSuUExIDMQ7lKaUcuUJlCbadhisQ6sYFWoDCEZKnh8KIbrolUk3FTxjjHKc6rFMiGAT_EbuibSI5IYYI08wMjHKSn5R1iYcfE16GgNy_P35TqOtxFpnmUxUtfX38DbM-aaGpe493IFW9fKqdmFWvlUP5cueXWx7MD346OEz7tzhu_hiEN9-AkV85ew |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LSsQwFL2MD1AXvsW3WejOYptmpokgoqMy4ji4GEHc1CZNRBw6akdlfspv9CbT-gBx58J1mkKb0_vqvecAbIZJGoYJk15VMOYxHSQe15R7kZU1l0YzYxzPbDNqtfjVlbiowFs5C2PbKkub6Ax12lW2Rr6DcTe1XCm1aP_h0bOqUfbvaimhMYDFme6_YsqW750e4fluUXpy3K43vEJVwFMI3p6X0MAgjo0wjEvjG19RHigMZIQUGO0YdPFSSV9qLhVmmlXGEsaEDiS6YgRvFOJ9h2CEMUyW8Pu5qF5_1HQsxyYP_QG5URgKf-dTyyZ3qRW3k7pfHeB3---c2snUf3sd0zBZhM_kYID3GajobBYmvpAqzsF9vS8tVjodO8FFjnTPdZtlu6TRt-NpxMq_dXJyiP47Jd2MnLt-Uk0KqtlbkmQpaSWOkIQ0i3ouKSYq7Hq75L3N5-HyT552AYazbqYXgWAeGNBISlnDmFP5iRQp50zg1oCnUoZLQMtzjlXBt25lPzox5l0WHPEP4FiC7Y9NDwO6kd8vXy3RERe2J48_obH8-_IGjDXa5824edo6W4Fxart13JTlKgz3np71Goyql95d_rTuYE7g5q-B9A4E7jzS |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xEiqHUh5VaSn1odyINnG8GxsJIcp2BWK72gNIiEuIHRuhrrJAFqr9a_w6ZrwJD6nixoGz4yiJP8_Dmfk-gJ9xlsdxJnTQVEIEwkZZIC2XQUKy5tpZ4Zznme0mvZ48PVX9Kbive2GorLK2id5Q50NDZ-QNjLs5caW0koaryiL67c7u1XVAClL0p7WW05hA5MiO_2H6Vu4ctnGtNznv_D7ePwgqhYHAIJBHQcYjh5h2ygmpXehCw2VkMKhRWmHk49Dda6NDbaU2mHU2hciEUDbS6JYRyEmM952GWXwqRbur3zx7PN8hvk0ZhxOiozhWYeNJ16b0aZakrt3nzvClL_AOrrP4nj_NJ_hYhdVsb7IPlmDKFsuw8IxscQX-7o81YWgwoM4u1rYjX4VWbLODMbWtMZKFG5TsF_r1nA0L9sfXmVpWUdBesKzIWS_zRCWsW53zsqrTgsaPaz7cchVO3uRtP8NMMSzsF2CYH0Y80Vq3MBY1YaZVLqVQODWSudbxGvB6zVNT8bCTHMggxXyMgJL-ByhrsPU46WpCQ_L65es1UtLKJpXpE0y-vj78A-YRP2n3sHf0DT5wKuLxzZfrMDO6ubXfYc7cjS7Lmw2PeAbnb42jB9kERaU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyberbullying+Detection%3A+Hybrid+Models+Based+on+Machine+Learning+and+Natural+Language+Processing+Techniques&rft.jtitle=Electronics+%28Basel%29&rft.au=Chahat+Raj&rft.au=Agarwal%2C+Ayush&rft.au=Bharathy%2C+Gnana&rft.au=Bhuva+Narayan&rft.date=2021-11-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=10&rft.issue=22&rft.spage=2810&rft_id=info:doi/10.3390%2Felectronics10222810&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |