Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques

The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 10; číslo 22; s. 2810
Hlavní autoři: Raj, Chahat, Agarwal, Ayush, Bharathy, Gnana, Narayan, Bhuva, Prasad, Mukesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.11.2021
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit content. Machine learning has wide applications in text classification, and researchers are shifting towards using deep neural networks in detecting cyberbullying due to the several advantages they have over traditional machine learning algorithms. This paper proposes a novel neural network framework with parameter optimization and an algorithmic comparative study of eleven classification methods: four traditional machine learning and seven shallow neural networks on two real world cyberbullying datasets. In addition, this paper also examines the effect of feature extraction and word-embedding-techniques-based natural language processing on algorithmic performance. Key observations from this study show that bidirectional neural networks and attention models provide high classification results. Logistic Regression was observed to be the best among the traditional machine learning classifiers used. Term Frequency-Inverse Document Frequency (TF-IDF) demonstrates consistently high accuracies with traditional machine learning techniques. Global Vectors (GloVe) perform better with neural network models. Bi-GRU and Bi-LSTM worked best amongst the neural networks used. The extensive experiments performed on the two datasets establish the importance of this work by comparing eleven classification methods and seven feature extraction techniques. Our proposed shallow neural networks outperform existing state-of-the-art approaches for cyberbullying detection, with accuracy and F1-scores as high as ~95% and ~98%, respectively.
AbstractList The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment, insults, and attacks are commonly termed cyberbullying. The sheer volume of user-generated content has made it challenging to identify such illicit content. Machine learning has wide applications in text classification, and researchers are shifting towards using deep neural networks in detecting cyberbullying due to the several advantages they have over traditional machine learning algorithms. This paper proposes a novel neural network framework with parameter optimization and an algorithmic comparative study of eleven classification methods: four traditional machine learning and seven shallow neural networks on two real world cyberbullying datasets. In addition, this paper also examines the effect of feature extraction and word-embedding-techniques-based natural language processing on algorithmic performance. Key observations from this study show that bidirectional neural networks and attention models provide high classification results. Logistic Regression was observed to be the best among the traditional machine learning classifiers used. Term Frequency-Inverse Document Frequency (TF-IDF) demonstrates consistently high accuracies with traditional machine learning techniques. Global Vectors (GloVe) perform better with neural network models. Bi-GRU and Bi-LSTM worked best amongst the neural networks used. The extensive experiments performed on the two datasets establish the importance of this work by comparing eleven classification methods and seven feature extraction techniques. Our proposed shallow neural networks outperform existing state-of-the-art approaches for cyberbullying detection, with accuracy and F1-scores as high as ~95% and ~98%, respectively.
Author Narayan, Bhuva
Bharathy, Gnana
Agarwal, Ayush
Prasad, Mukesh
Raj, Chahat
Author_xml – sequence: 1
  givenname: Chahat
  orcidid: 0000-0003-0083-6812
  surname: Raj
  fullname: Raj, Chahat
– sequence: 2
  givenname: Ayush
  surname: Agarwal
  fullname: Agarwal, Ayush
– sequence: 3
  givenname: Gnana
  orcidid: 0000-0001-8384-9509
  surname: Bharathy
  fullname: Bharathy, Gnana
– sequence: 4
  givenname: Bhuva
  orcidid: 0000-0001-8852-5589
  surname: Narayan
  fullname: Narayan, Bhuva
– sequence: 5
  givenname: Mukesh
  orcidid: 0000-0002-7745-9667
  surname: Prasad
  fullname: Prasad, Mukesh
BookMark eNp9UMlOwzAQtVCRKKVfwMUS54CXtIm5QVmKlAKHco5sZ9y6BLvYySF_T6JyQAgxlxlp3qL3TtHIeQcInVNyybkgV1CDboJ3VkdKGGM5JUdozEgmEsEEG_24T9A0xh3pR1CeczJG74tOQVBtXXfWbfAdNL2Y9e4aLzsVbIVXvoI64lsZocLe4ZXUW-sAFyCDGyjSVfhZNm2QNS6k27RyA_g1eA0xDv816K2zny3EM3RsZB1h-r0n6O3hfr1YJsXL49Pipkg0Z6xJJKOG5twIk-bKEEN0H0nPqBBKCMbNnM6UVkRBrjQoPktTmaYCqOrTZyLN-ARdHHT3wQ--TbnzbXC9ZcnmhBGepfMBJQ4oHXyMAUypbSOH7E2Qti4pKYd6yz_q7bn8F3cf7IcM3b-sL2VehNY
CitedBy_id crossref_primary_10_1007_s42380_024_00282_1
crossref_primary_10_3390_s24123875
crossref_primary_10_3390_s22239319
crossref_primary_10_1007_s41870_024_02350_7
crossref_primary_10_3390_sym17081310
crossref_primary_10_3389_frai_2024_1269366
crossref_primary_10_3390_fi15050179
crossref_primary_10_1007_s11042_024_18452_0
crossref_primary_10_3390_computers14060239
crossref_primary_10_3390_s22176468
crossref_primary_10_1007_s11042_024_19031_z
crossref_primary_10_1080_08874417_2022_2155267
crossref_primary_10_7717_peerj_cs_1617
crossref_primary_10_1016_j_jss_2025_112435
crossref_primary_10_3390_app13179992
crossref_primary_10_7717_peerj_cs_2942
crossref_primary_10_26634_jip_9_4_19138
crossref_primary_10_1016_j_eswa_2023_122644
crossref_primary_10_3390_mca30040091
crossref_primary_10_2478_jsiot_2023_0020
crossref_primary_10_3390_app142311471
Cites_doi 10.1145/361219.361220
10.18653/v1/W17-4209
10.1002/cpe.5627
10.18653/v1/W17-3004
10.1007/978-3-319-92639-1_47
10.1109/78.650093
10.1145/2740908.2742760
10.18653/v1/E17-2068
10.1162/neco.1997.9.8.1735
10.1142/S0218488598000094
10.1145/2872427.2883062
10.3115/v1/D14-1179
10.1162/tacl_a_00051
10.18653/v1/W19-3515
10.1109/ICACCS.2019.8728378
10.1145/3038912.3052591
10.3115/v1/P14-1062
10.18653/v1/S19-2100
10.1109/ICMLA.2016.0132
10.1109/eStream.2019.8732167
10.1109/ICCMC.2019.8819734
10.1609/aaai.v27i1.8539
10.1109/WiSPNET.2016.7566545
10.1109/ICMLA.2011.152
10.1609/icwsm.v11i1.14955
10.32614/CRAN.package.xgboost
10.1162/tacl_a_00143
10.1145/3041021.3054223
10.18653/v1/N16-1018
10.1007/978-3-540-74958-5_35
10.3390/fi12110187
10.1609/icwsm.v13i01.3215
10.1007/978-3-319-73706-5_15
10.18653/v1/N16-2013
10.3115/v1/D14-1181
10.1001/jamapediatrics.2013.3343
10.3115/v1/D14-1162
10.1109/SIEDS.2019.8735592
10.1162/tacl_a_00063
10.1145/2939672.2939785
10.18653/v1/W17-1101
10.1007/978-3-319-76941-7_11
10.1007/978-3-030-63823-8_14
10.1016/j.chb.2009.11.014
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics10222810
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics10222810
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-a21f183f9f48bf0f0c281c5199b9923f615bcb0be8bceb3544a449e1b10279473
IEDL.DBID P5Z
ISICitedReferencesCount 34
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000725719500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 09 06:19:17 EST 2025
Sat Nov 29 07:12:39 EST 2025
Tue Nov 18 22:54:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-a21f183f9f48bf0f0c281c5199b9923f615bcb0be8bceb3544a449e1b10279473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8384-9509
0000-0002-7745-9667
0000-0001-8852-5589
0000-0003-0083-6812
OpenAccessLink https://www.proquest.com/docview/2602037467?pq-origsite=%requestingapplication%
PQID 2602037467
PQPubID 2032404
ParticipantIDs proquest_journals_2602037467
crossref_citationtrail_10_3390_electronics10222810
crossref_primary_10_3390_electronics10222810
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Hochreiter (ref_52) 1997; 9
ref_14
ref_58
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_51
ref_18
ref_17
ref_16
ref_15
Schuster (ref_54) 1997; 45
Wieting (ref_42) 2015; 3
ref_24
ref_23
ref_22
ref_21
ref_20
Bojanowski (ref_39) 2017; 5
Sulzmann (ref_48) 2007; 4701
Sarkar (ref_49) 2015; 8
ref_29
ref_28
ref_27
ref_26
Moreno (ref_1) 2014; 168
ref_35
ref_34
ref_33
ref_32
ref_31
ref_30
Tokunaga (ref_25) 2010; 26
ref_38
Salton (ref_36) 1975; 18
Hochreiter (ref_53) 1998; 6
ref_47
ref_46
Qaiser (ref_19) 2018; 181
ref_44
ref_43
ref_41
ref_40
Shi (ref_37) 2009; 29
ref_3
ref_2
ref_9
ref_8
Lu (ref_13) 2020; 32
ref_5
Leviant (ref_45) 2017; 5
ref_4
ref_7
ref_6
References_xml – volume: 18
  start-page: 613
  year: 1975
  ident: ref_36
  article-title: A vector space model for automatic indexing
  publication-title: Commun. ACM
  doi: 10.1145/361219.361220
– ident: ref_4
  doi: 10.18653/v1/W17-4209
– volume: 32
  start-page: e5627
  year: 2020
  ident: ref_13
  article-title: Cyberbullying detection in social media text based on character-level convolutional neural network with shortcuts
  publication-title: Concurr. Comput. Pr. Exp.
  doi: 10.1002/cpe.5627
– ident: ref_33
  doi: 10.18653/v1/W17-3004
– ident: ref_26
– ident: ref_2
  doi: 10.1007/978-3-319-92639-1_47
– volume: 45
  start-page: 2673
  year: 1997
  ident: ref_54
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/78.650093
– ident: ref_6
  doi: 10.1145/2740908.2742760
– ident: ref_40
  doi: 10.18653/v1/E17-2068
– volume: 9
  start-page: 1735
  year: 1997
  ident: ref_52
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 6
  start-page: 107
  year: 1998
  ident: ref_53
  article-title: The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions
  publication-title: Int. J. Uncertain. Fuzziness Knowl.-Based Syst.
  doi: 10.1142/S0218488598000094
– ident: ref_7
  doi: 10.1145/2872427.2883062
– ident: ref_55
  doi: 10.3115/v1/D14-1179
– volume: 5
  start-page: 135
  year: 2017
  ident: ref_39
  article-title: Enriching Word Vectors with Subword Information
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00051
– ident: ref_58
  doi: 10.18653/v1/W19-3515
– ident: ref_34
  doi: 10.1109/ICACCS.2019.8728378
– ident: ref_17
  doi: 10.1145/3038912.3052591
– ident: ref_51
  doi: 10.3115/v1/P14-1062
– ident: ref_29
  doi: 10.18653/v1/S19-2100
– ident: ref_14
  doi: 10.1109/ICMLA.2016.0132
– ident: ref_22
  doi: 10.1109/eStream.2019.8732167
– ident: ref_32
  doi: 10.1109/ICCMC.2019.8819734
– ident: ref_23
  doi: 10.1609/aaai.v27i1.8539
– ident: ref_31
– ident: ref_56
– ident: ref_21
  doi: 10.1109/WiSPNET.2016.7566545
– ident: ref_16
  doi: 10.1109/ICMLA.2011.152
– volume: 8
  start-page: 33
  year: 2015
  ident: ref_49
  article-title: Text Classification using Support Vector Machine Anurag
  publication-title: Int. J. Eng. Sci. Invent.
– ident: ref_5
  doi: 10.1609/icwsm.v11i1.14955
– ident: ref_41
– ident: ref_46
  doi: 10.32614/CRAN.package.xgboost
– volume: 3
  start-page: 345
  year: 2015
  ident: ref_42
  article-title: From Paraphrase Database to Compositional Paraphrase Model and Back
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00143
– volume: 29
  start-page: 167
  year: 2009
  ident: ref_37
  article-title: Study of TFIDF algorithm
  publication-title: J. Comput. Appl.
– ident: ref_20
– ident: ref_11
  doi: 10.1145/3041021.3054223
– ident: ref_28
– ident: ref_44
  doi: 10.18653/v1/N16-1018
– volume: 181
  start-page: 25
  year: 2018
  ident: ref_19
  article-title: Text Mining: Use of TF-IDF to Examine the Relevance of Words to Documents
  publication-title: Int. J. Comput. Appl.
– volume: 4701
  start-page: 371
  year: 2007
  ident: ref_48
  article-title: On Pairwise Naive Bayes Classifiers
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-540-74958-5_35
– ident: ref_3
– ident: ref_24
– ident: ref_8
  doi: 10.3390/fi12110187
– ident: ref_30
  doi: 10.1609/icwsm.v13i01.3215
– ident: ref_57
  doi: 10.1007/978-3-319-73706-5_15
– ident: ref_10
  doi: 10.18653/v1/N16-2013
– ident: ref_12
  doi: 10.3115/v1/D14-1181
– volume: 168
  start-page: 500
  year: 2014
  ident: ref_1
  article-title: Cyberbullying
  publication-title: JAMA Pediatrics
  doi: 10.1001/jamapediatrics.2013.3343
– ident: ref_38
  doi: 10.3115/v1/D14-1162
– ident: ref_50
– ident: ref_9
  doi: 10.1109/SIEDS.2019.8735592
– volume: 5
  start-page: 309
  year: 2017
  ident: ref_45
  article-title: Semantic Specialization of Distributional Word Vector Spaces using Monolingual and Cross-Lingual Constraints
  publication-title: Trans. Assoc. Comput. Linguist.
  doi: 10.1162/tacl_a_00063
– ident: ref_47
  doi: 10.1145/2939672.2939785
– ident: ref_18
  doi: 10.18653/v1/W17-1101
– ident: ref_15
– ident: ref_27
  doi: 10.1007/978-3-319-76941-7_11
– ident: ref_43
– ident: ref_35
  doi: 10.1007/978-3-030-63823-8_14
– volume: 26
  start-page: 277
  year: 2010
  ident: ref_25
  article-title: Following you home from school: A critical review and synthesis of research on cyberbullying victimization
  publication-title: Comput. Hum. Behav.
  doi: 10.1016/j.chb.2009.11.014
SSID ssj0000913830
Score 2.5327904
Snippet The rise in web and social media interactions has resulted in the efortless proliferation of offensive language and hate speech. Such online harassment,...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2810
SubjectTerms Algorithms
Artificial neural networks
Bullying
Classification
Comparative studies
Cyberbullying
Datasets
Feature extraction
Hate speech
Machine learning
Natural language processing
Neural networks
Optimization
Social networks
User generated content
Title Cyberbullying Detection: Hybrid Models Based on Machine Learning and Natural Language Processing Techniques
URI https://www.proquest.com/docview/2602037467
Volume 10
WOSCitedRecordID wos000725719500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central Database Suite (ProQuest)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDLaAcYADb8RjTDlwpFrXplvCBbExBBKbKgTS4FIlaYIQUwd0IHHhtxNnGQ8JceHaNFJlx47t2t8HsK-aMg6FxKYwJgLKQxFInthATiTNnGpqoqZ0ZBOtfp8NBjz1BbfSt1VOfaJz1PlIYY28buPuCLFSmq2jx6cAWaPw76qn0JiFCqIkoGGmye1njQUxL1kcTsCGYpvd17-4ZUqX6jCcnP1-If30x-6SOV3-7-etwJIPL8nx5Dyswowu1mDxG-jgOjx03iTKcjjECSdyoseuG6s4JGdvOL5FkB5tWJK2vd9yMipIz_VbauKhWO-IKHLSFw6wg1z4eifxEwe4fjXFhS034Pq0e9U5CzzlQqCsZY8DETWMNXLDDWXShCZUVkTKRnlcchsKGhv_SCVDqZlUNg1PKBWUct2QVprWslvxJswVo0JvAdGhYswImcuGpLFgPJSJ4ZrmXIjEqHwboqncM-XxyJEWY5jZvASVlf2irG04-Nz0OIHj-Pv16lRbmbfNMvtS1c7fy7uwEGEHi5s8rMLc-PlF78G8eh3fl881qLS7_fSyBrO9927NHTz7LD3vpTcfXjbmZg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1JS8QwFH64gXpwF3dz0JvFTJvOJIKIKyOOg4cRxEtN0kTEoaN2VOZP-Rt9ybQuIN48eE5baPPlbX3v-wA2dFVFVCrXFMZlwASVgRIxBnIyrqbMMBtWlRebqDWb_OpKXAzAWzkL49oqS5voDXXa0a5Gvo1xd-i4Uqq1vYfHwKlGub-rpYRGHxZnpveKKVu-e3qE-7sZhifHrcN6UKgKBBrB2w1kWLGIYyss48pSS3XIKxoDGaEERjsWXbzSiirDlcZMM2ZMMiZMRaErRvDWInzuIAwzhskSnp-L-PqjpuM4NnlE--RGUSTo9qeWTe5TK-4mdb86wO_23zu1k8n_9jmmYKIIn8l-H-_TMGCyGRj_Qqo4C_eHPeWw0m67CS5yZLq-2yzbIfWeG08jTv6tnZMD9N8p6WTk3PeTGlJQzd4SmaWkKT0hCWkU9VxSTFS49VbJe5vPweWfvO08DGWdzCwAMVRzbqVKVUWxSHJBVWyFYamQMrY6XYSw3OdEF3zrTvajnWDe5cCR_ACORdj6uOmhTzfy--UrJTqSwvbkySc0ln5fXofReuu8kTROm2fLMBa6bh0_ZbkCQ92nZ7MKI_qle5c_rXmYE7j5ayC9A1VkPe0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqCo4AG1BfOMDvRGtN3F27UpVVVhWIGC1B5BQL6nt2AixygLZFu1f66_rjDcBKiFuHDg7iZL4Zb4y8x7Ajm2ZhGtDTWFSR0JxHRmVYiCn01YunPBxywSxiXavJy8uVH8K_tazMNRWWdvEYKjzoaUaeQPj7pi4Ulrthq_aIvqd7veb24gUpOhPay2nMYHIsRvfY_pWfjvq4F5_iePuwdn-YVQpDEQWgTyKdNz0iGmvvJDGc89tLJsWgxplFEY-Ht29sYYbJ43FrDMVQguhXNOgW0YgtxO87juYwbtSlPj1058P9R3i25QJnxAdJYnijUddmzKkWZKmdp86w_99QXBw3YW3_GoWYb4Kq9mPyXfwEaZc8QnmnpAtfobr_bEhDA0GNNnFOm4UutCKr-xwTGNrjGThBiXbQ7-es2HBTkOfqWMVBe0l00XOejoQlbCTqs7LqkkLWj-r-XDLJTh_laddhuliWLgVYI5bKb02uWkakWipuEm9ciJXWqfe5qsQ13ue2YqHneRABhnmYwSU7BmgrMLuw0k3ExqSlw_fqJGSVTapzB5hsvby8jZ8QPxkJ0e943WYjamJJwxfbsD06O6324T39s_oqrzbCohn8Ou1cfQPKtpGwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cyberbullying+Detection%3A+Hybrid+Models+Based+on+Machine+Learning+and+Natural+Language+Processing+Techniques&rft.jtitle=Electronics+%28Basel%29&rft.au=Raj%2C+Chahat&rft.au=Agarwal%2C+Ayush&rft.au=Bharathy%2C+Gnana&rft.au=Narayan%2C+Bhuva&rft.date=2021-11-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=22&rft.spage=2810&rft_id=info:doi/10.3390%2Felectronics10222810&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10222810
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon