The most nonelementary theory

We give a direct proof by generic reduction that testing validity of formulas in a decidable rudimentary theory Ω of finite typed sets (Henkin, Fundamenta Mathematicæ 52 (1963) 323–344) requires space and time exceeding infinitely often (1) 2 · · · 2 exp ∞( exp(cn))=2 height 2 cm for some constant c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information and computation Jg. 190; H. 2; S. 196 - 219
1. Verfasser: Vorobyov, Sergei
Format: Journal Article
Sprache:Englisch
Veröffentlicht: San Diego, CA Elsevier Inc 01.05.2004
Elsevier
Schlagworte:
ISSN:0890-5401, 1090-2651
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We give a direct proof by generic reduction that testing validity of formulas in a decidable rudimentary theory Ω of finite typed sets (Henkin, Fundamenta Mathematicæ 52 (1963) 323–344) requires space and time exceeding infinitely often (1) 2 · · · 2 exp ∞( exp(cn))=2 height 2 cm for some constant c>0, where n denotes the length of input. This gives the highest currently known lower bound for a decidable logical theory and affirmatively settles Problem 10.13 from (Compton and Henson, Ann. Pure Applied Logic 48 (1990) 1–79): The highest previously known lower (and upper) bounds for “natural” decidable theories, like WS1S, S2S, are of the form exp ∞( dn), with just linearly growing stacks of twos. Originally, the lower bound (1) for Ω was settled in (12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), 1997, 294–305) using the powerful uniform lower bounds method due to Compton and Henson, and probably would never be discovered otherwise. Although very concise, the original proof has certain gaps, because the method was pushed out of the limits it was originally designed and intended for, and some hidden assumptions were violated. This results in slightly weaker bounds—the stack of twos in (1) grows subexponentially, but superpolynomially, namely, as 2 c n for formulas with fixed quantifier prefix, or as 2 cn/log( n) for formulas with varying prefix. The independent direct proof presented in this paper closes the gaps and settles the originally claimed lower bound (1) for the minimally typed, succinct version of Ω.
AbstractList We give a direct proof by generic reduction that testing validity of formulas in a decidable rudimentary theory Ω of finite typed sets (Henkin, Fundamenta Mathematicæ 52 (1963) 323–344) requires space and time exceeding infinitely often (1) 2 · · · 2 exp ∞( exp(cn))=2 height 2 cm for some constant c>0, where n denotes the length of input. This gives the highest currently known lower bound for a decidable logical theory and affirmatively settles Problem 10.13 from (Compton and Henson, Ann. Pure Applied Logic 48 (1990) 1–79): The highest previously known lower (and upper) bounds for “natural” decidable theories, like WS1S, S2S, are of the form exp ∞( dn), with just linearly growing stacks of twos. Originally, the lower bound (1) for Ω was settled in (12th Annual IEEE Symposium on Logic in Computer Science (LICS’97), 1997, 294–305) using the powerful uniform lower bounds method due to Compton and Henson, and probably would never be discovered otherwise. Although very concise, the original proof has certain gaps, because the method was pushed out of the limits it was originally designed and intended for, and some hidden assumptions were violated. This results in slightly weaker bounds—the stack of twos in (1) grows subexponentially, but superpolynomially, namely, as 2 c n for formulas with fixed quantifier prefix, or as 2 cn/log( n) for formulas with varying prefix. The independent direct proof presented in this paper closes the gaps and settles the originally claimed lower bound (1) for the minimally typed, succinct version of Ω.
Author Vorobyov, Sergei
Author_xml – sequence: 1
  givenname: Sergei
  surname: Vorobyov
  fullname: Vorobyov, Sergei
  email: Sergei.Vorobyov@csd.uu.se
  organization: Information Technology Department, Box 337, Uppsala University, 751 05 Uppsala, Sweden
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15758676$$DView record in Pascal Francis
BookMark eNp9kM1LAzEUxINUsK3evQh78bjrS7JJdr1J8QsKXuo5xOwLTdnuliQI_e9NWUEQ9PTmML9h3izIbBgHJOSaQkWByrtd5W3FAOoKWAXAzsicQgslk4LOyByarEUN9IIsYtwBUCpqOSc3my0W-zGm4pTX4x6HZMKxSFscw_GSnDvTR7z6vkvy_vS4Wb2U67fn19XDurScsVQaQOkaxTk0XChnpFBcOtrWHWdgm9o6wVvTtpQ51XH4UEzJrpZCOmaxA8qX5HbKPZhoTe-CGayP-hD8PpfRVCjRSCWzDyafDWOMAd2PBfRpBr3T3urTDBqYzjNkRP5CrE8m-XFIwfj-P_B-AjE__ukx6Gg9DrmwD2iT7kb_N_wFGgx1bA
CODEN INFCEC
CitedBy_id crossref_primary_10_1145_2858784
Cites_doi 10.1016/0022-0000(91)90036-5
10.1016/0304-3975(76)90061-X
10.2307/2273858
10.1016/0304-3975(79)90007-0
10.1016/0304-3975(92)90020-G
10.1145/275487.275515
10.1145/800125.804029
10.1016/0168-0072(90)90080-L
10.4064/fm-52-3-323-344
10.1016/0304-3975(93)90219-J
10.1007/BFb0064872
10.1007/BFb0062837
10.1016/0022-0000(80)90027-6
10.1109/LICS.1997.614956
ContentType Journal Article
Copyright 2004 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.ic.2004.02.002
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Applied Sciences
EISSN 1090-2651
EndPage 219
ExternalDocumentID 15758676
10_1016_j_ic_2004_02_002
S0890540104000264
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CAG
COF
CS3
DM4
DU5
E3Z
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
H~9
IHE
IXB
J1W
KOM
LG5
LX9
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
ZU3
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c322t-a0e6f873308357fa65736f194d320c84cf539a9912f7d30b7276d4656f2ced013
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000220943600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0890-5401
IngestDate Mon Jul 21 09:12:31 EDT 2025
Sat Nov 29 01:56:28 EST 2025
Tue Nov 18 21:22:38 EST 2025
Fri Feb 23 02:30:04 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Inductive definition
03D15 Complexity of computation
Lower complexity bound
Reduction via length order
MSC 68Q25 Analysis of algorithms and problem complexity
Nonelementary theory
Generic reduction
Computer theory
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c322t-a0e6f873308357fa65736f194d320c84cf539a9912f7d30b7276d4656f2ced013
OpenAccessLink https://dx.doi.org/10.1016/j.ic.2004.02.002
PageCount 24
ParticipantIDs pascalfrancis_primary_15758676
crossref_primary_10_1016_j_ic_2004_02_002
crossref_citationtrail_10_1016_j_ic_2004_02_002
elsevier_sciencedirect_doi_10_1016_j_ic_2004_02_002
PublicationCentury 2000
PublicationDate 2004-05-01
PublicationDateYYYYMMDD 2004-05-01
PublicationDate_xml – month: 05
  year: 2004
  text: 2004-05-01
  day: 01
PublicationDecade 2000
PublicationPlace San Diego, CA
PublicationPlace_xml – name: San Diego, CA
PublicationTitle Information and computation
PublicationYear 2004
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Kuper, Vardi (BIB6) 1993; 116
A.R. Meyer, Weak monadic second-order theory of successor is not elementary-recursive, in: R. Parikh (Ed.), Logic Colloquium: Symposium on Logic Held at Boston, 1972–1973, Vol. 453 of Lect. Notes Math., Springer-Verlag, 1975, pp. 132–154
Hopcroft, Ullman (BIB4) 1979
Meyer (BIB9) 1974
L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time: preliminary report, in: 5th Symposium on Theory of Computing, 1973, pp. 1–9
Stockmeyer (BIB15) 1987; 52
Statman (BIB11) 1979; 9
Hull, Su (BIB5) 1991; 43
Henkin (BIB3) 1963; 52
Lewis (BIB7) 1980; 21
Urquhart (BIB16) 1990
L.J. Stockmeyer, The complexity of decision problems in automata theory and logic, PhD thesis, MIT Lab for Computer Science, 1974 (Also /MIT/LCS Tech Rep 133)
S. Vorobyov, A. Voronkov, Complexity of nonrecursive logic programs with complex values, in: J. Paredaens, L. Colby (Eds.), Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’98), 1998, pp. 244–253
Compton, Henson (BIB1) 1990; 48
in: Lect. Notes Math., vol. 718, Springer-Verlag, Berlin, 1979
Mairson (BIB8) 1992; 103
J. Ferrante, C. W. Rackoff, The computational complexity of logical theories
Stockmeyer (BIB14) 1977; 3
S. Vorobyov, The “hardest” natural decidable theory, in: G. Winskel (Ed.), 12th Annual IEEE Symp. on Logic in Computer Science (LICS’97), 1997, pp. 294–305
Hopcroft (10.1016/j.ic.2004.02.002_BIB4) 1979
Lewis (10.1016/j.ic.2004.02.002_BIB7) 1980; 21
Meyer (10.1016/j.ic.2004.02.002_BIB9) 1974
Stockmeyer (10.1016/j.ic.2004.02.002_BIB14) 1977; 3
10.1016/j.ic.2004.02.002_BIB13
Henkin (10.1016/j.ic.2004.02.002_BIB3) 1963; 52
10.1016/j.ic.2004.02.002_BIB10
10.1016/j.ic.2004.02.002_BIB2
10.1016/j.ic.2004.02.002_BIB12
Mairson (10.1016/j.ic.2004.02.002_BIB8) 1992; 103
Statman (10.1016/j.ic.2004.02.002_BIB11) 1979; 9
Compton (10.1016/j.ic.2004.02.002_BIB1) 1990; 48
10.1016/j.ic.2004.02.002_BIB17
10.1016/j.ic.2004.02.002_BIB18
Stockmeyer (10.1016/j.ic.2004.02.002_BIB15) 1987; 52
Hull (10.1016/j.ic.2004.02.002_BIB5) 1991; 43
Urquhart (10.1016/j.ic.2004.02.002_BIB16) 1990
Kuper (10.1016/j.ic.2004.02.002_BIB6) 1993; 116
References_xml – start-page: 61
  year: 1990
  end-page: 76
  ident: BIB16
  article-title: The complexity of decision procedures in relevance logic
  publication-title: Truth or Consequences: Essays in Honor of Nuel Belnap
– reference: in: Lect. Notes Math., vol. 718, Springer-Verlag, Berlin, 1979
– volume: 9
  start-page: 73
  year: 1979
  end-page: 81
  ident: BIB11
  article-title: The typed
  publication-title: Theor. Comput. Sci.
– volume: 52
  start-page: 323
  year: 1963
  end-page: 344
  ident: BIB3
  article-title: A theory of propositional types
  publication-title: Fundamenta Mathematicæ
– volume: 103
  start-page: 387
  year: 1992
  end-page: 394
  ident: BIB8
  article-title: A simple proof of a theorem of Statman
  publication-title: Theor. Comput. Sci.
– start-page: 477
  year: 1974
  end-page: 482
  ident: BIB9
  article-title: The inherent computational complexity of theories of ordered sets
  publication-title: International Congress of Mathematicians
– reference: A.R. Meyer, Weak monadic second-order theory of successor is not elementary-recursive, in: R. Parikh (Ed.), Logic Colloquium: Symposium on Logic Held at Boston, 1972–1973, Vol. 453 of Lect. Notes Math., Springer-Verlag, 1975, pp. 132–154
– reference: L.J. Stockmeyer, A.R. Meyer, Word problems requiring exponential time: preliminary report, in: 5th Symposium on Theory of Computing, 1973, pp. 1–9
– volume: 52
  start-page: 1
  year: 1987
  end-page: 43
  ident: BIB15
  article-title: Classifying the computational complexity of problems
  publication-title: J. Symb. Logic
– reference: S. Vorobyov, A. Voronkov, Complexity of nonrecursive logic programs with complex values, in: J. Paredaens, L. Colby (Eds.), Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (PODS’98), 1998, pp. 244–253
– volume: 116
  start-page: 33
  year: 1993
  end-page: 57
  ident: BIB6
  article-title: On the complexity of queries in the logical data model
  publication-title: Theor. Comput. Sci.
– reference: L.J. Stockmeyer, The complexity of decision problems in automata theory and logic, PhD thesis, MIT Lab for Computer Science, 1974 (Also /MIT/LCS Tech Rep 133)
– reference: J. Ferrante, C. W. Rackoff, The computational complexity of logical theories,
– volume: 43
  start-page: 219
  year: 1991
  end-page: 267
  ident: BIB5
  article-title: On the expressive power of database queries with intermediate types
  publication-title: J. Comput. Syst. Sci.
– volume: 21
  start-page: 317
  year: 1980
  end-page: 353
  ident: BIB7
  article-title: Complexity results for classes of quantificational formulas
  publication-title: J. Comput. Syst. Sci.
– reference: S. Vorobyov, The “hardest” natural decidable theory, in: G. Winskel (Ed.), 12th Annual IEEE Symp. on Logic in Computer Science (LICS’97), 1997, pp. 294–305
– year: 1979
  ident: BIB4
  article-title: Introduction to Automata Theory, Languages and Computation
– volume: 3
  start-page: 1
  year: 1977
  end-page: 22
  ident: BIB14
  article-title: The polynomial-time hierarchy
  publication-title: Theor. Comput. Sci.
– volume: 48
  start-page: 1
  year: 1990
  end-page: 79
  ident: BIB1
  article-title: A uniform method for proving lower bounds on the computational complexity of logical theories
  publication-title: Ann. Pure Appl. Logic
– year: 1979
  ident: 10.1016/j.ic.2004.02.002_BIB4
– volume: 43
  start-page: 219
  year: 1991
  ident: 10.1016/j.ic.2004.02.002_BIB5
  article-title: On the expressive power of database queries with intermediate types
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(91)90036-5
– ident: 10.1016/j.ic.2004.02.002_BIB13
– volume: 3
  start-page: 1
  year: 1977
  ident: 10.1016/j.ic.2004.02.002_BIB14
  article-title: The polynomial-time hierarchy
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(76)90061-X
– volume: 52
  start-page: 1
  issue: 1
  year: 1987
  ident: 10.1016/j.ic.2004.02.002_BIB15
  article-title: Classifying the computational complexity of problems
  publication-title: J. Symb. Logic
  doi: 10.2307/2273858
– volume: 9
  start-page: 73
  year: 1979
  ident: 10.1016/j.ic.2004.02.002_BIB11
  article-title: The typed λ-calculus is not elementary recursive
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(79)90007-0
– volume: 103
  start-page: 387
  year: 1992
  ident: 10.1016/j.ic.2004.02.002_BIB8
  article-title: A simple proof of a theorem of Statman
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(92)90020-G
– ident: 10.1016/j.ic.2004.02.002_BIB18
  doi: 10.1145/275487.275515
– ident: 10.1016/j.ic.2004.02.002_BIB12
  doi: 10.1145/800125.804029
– volume: 48
  start-page: 1
  year: 1990
  ident: 10.1016/j.ic.2004.02.002_BIB1
  article-title: A uniform method for proving lower bounds on the computational complexity of logical theories
  publication-title: Ann. Pure Appl. Logic
  doi: 10.1016/0168-0072(90)90080-L
– start-page: 61
  year: 1990
  ident: 10.1016/j.ic.2004.02.002_BIB16
  article-title: The complexity of decision procedures in relevance logic
– start-page: 477
  year: 1974
  ident: 10.1016/j.ic.2004.02.002_BIB9
  article-title: The inherent computational complexity of theories of ordered sets
– volume: 52
  start-page: 323
  year: 1963
  ident: 10.1016/j.ic.2004.02.002_BIB3
  article-title: A theory of propositional types
  publication-title: Fundamenta Mathematicæ
  doi: 10.4064/fm-52-3-323-344
– volume: 116
  start-page: 33
  year: 1993
  ident: 10.1016/j.ic.2004.02.002_BIB6
  article-title: On the complexity of queries in the logical data model
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(93)90219-J
– ident: 10.1016/j.ic.2004.02.002_BIB10
  doi: 10.1007/BFb0064872
– ident: 10.1016/j.ic.2004.02.002_BIB2
  doi: 10.1007/BFb0062837
– volume: 21
  start-page: 317
  year: 1980
  ident: 10.1016/j.ic.2004.02.002_BIB7
  article-title: Complexity results for classes of quantificational formulas
  publication-title: J. Comput. Syst. Sci.
  doi: 10.1016/0022-0000(80)90027-6
– ident: 10.1016/j.ic.2004.02.002_BIB17
  doi: 10.1109/LICS.1997.614956
SSID ssj0011546
Score 1.6730028
Snippet We give a direct proof by generic reduction that testing validity of formulas in a decidable rudimentary theory Ω of finite typed sets (Henkin, Fundamenta...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 196
SubjectTerms Applied sciences
Computer science; control theory; systems
Exact sciences and technology
Generic reduction
Inductive definition
Lower complexity bound
Miscellaneous
Nonelementary theory
Reduction via length order
Theoretical computing
Title The most nonelementary theory
URI https://dx.doi.org/10.1016/j.ic.2004.02.002
Volume 190
WOSCitedRecordID wos000220943600004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2651
  dateEnd: 20171231
  omitProxy: false
  ssIdentifier: ssj0011546
  issn: 0890-5401
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcG7ACaGHRDlC_lwGWaAomT-OMICDQ4tAiVqpwi17Gloq2rmoDKf7_n2GkTJhg7cIkiK4kj_56ef8_vC6FDHoLaY8nQ52qY-THFkc-kkD4BY4jqRIQ6HJbNJminwwYDfu2a4OVlOwE6HrPZjE_eFWoYA7BN6ux_wD3_KAzAPYAOV4Adrm8G_tfvvPgOhr1yweHTJ5ux2PDhukykogpIlmWDh4Znvt-96Z7edfvlGanJ0xw1TgniRUyePbpy-2xdu_DAREWEDVVoW3c6zHFNsYWc1PZIp-b-Ur_2JOD-aFQWh4xtNVS82Goq9_qzHWgeFxgCeWSEkiW0gmnCQUutnFyeD67mfqHQpV5VP-8czzZirznrS0Tj00TkIP7a9i2pkYneBlp3VoB3YtHbRB_UuIU-O4vAc_o2h6Gq6UY11kJrtQqSX9A-oO0ZtL0G2p5F-yu6vTjvnf3wXccLX4JiLXwRKKIZjSJDjKkWJKER0SGPswgHksVSJxEXQOmxplkUDIF8ksxUvNNYqgzY_BZaNtNtI0-Bca21immW8DgQghGZcKyCTABJw0y20XG1PKl05eBNV5KfaRX3d5-OpOlSGqcBTmFB2-jb_I2JLYXyyrNRteKpo3KWoqUgKq-8ddAAZzGNk4udfz2wi1YX0r-Hlovpg9pHH-VjMcqnB06a_gARHGyH
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+most+nonelementary+theory&rft.jtitle=Information+and+computation&rft.au=VOROBYOV%2C+Sergei&rft.date=2004-05-01&rft.pub=Elsevier&rft.issn=0890-5401&rft.volume=190&rft.issue=2&rft.spage=196&rft.epage=219&rft_id=info:doi/10.1016%2Fj.ic.2004.02.002&rft.externalDBID=n%2Fa&rft.externalDocID=15758676
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0890-5401&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0890-5401&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0890-5401&client=summon