GPR B-Scan Image Denoising via Multi-Scale Convolutional Autoencoder with Data Augmentation
Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods h...
Gespeichert in:
| Veröffentlicht in: | Electronics (Basel) Jg. 10; H. 11; S. 1269 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2021
|
| Schlagworte: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM). |
|---|---|
| AbstractList | Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM). |
| Author | Xu, Long Zhang, Shuo Lei, Wentai Wang, Yiwei Luo, Jiabin Luo, Shiguang Ren, Qiang Hou, Feifei Wang, Chenghao |
| Author_xml | – sequence: 1 givenname: Jiabin orcidid: 0000-0002-1713-1555 surname: Luo fullname: Luo, Jiabin – sequence: 2 givenname: Wentai orcidid: 0000-0002-3916-0533 surname: Lei fullname: Lei, Wentai – sequence: 3 givenname: Feifei orcidid: 0000-0002-0928-4826 surname: Hou fullname: Hou, Feifei – sequence: 4 givenname: Chenghao surname: Wang fullname: Wang, Chenghao – sequence: 5 givenname: Qiang surname: Ren fullname: Ren, Qiang – sequence: 6 givenname: Shuo surname: Zhang fullname: Zhang, Shuo – sequence: 7 givenname: Shiguang surname: Luo fullname: Luo, Shiguang – sequence: 8 givenname: Yiwei surname: Wang fullname: Wang, Yiwei – sequence: 9 givenname: Long surname: Xu fullname: Xu, Long |
| BookMark | eNp9UE1LAzEQDVLBWvsLvAQ8r-Zj3W6OtbW1UFH8OHlYZtOkpqRJTbIV_71b60FEHBhmmPfe8GaOUcd5pxA6peScc0EulFUyBe-MjJRQSlkhDlCXkYHIBBOs86M_Qv0YV6QNQXnJSRe9TO8f8FX2KMHh2RqWCo-V8yYat8RbA_i2scnsYKvwyLutt00y3oHFwyZ55aRfqIDfTXrFY0jQTpdr5RLsSCfoUIONqv9de-h5cv00usnmd9PZaDjPJGcsZSXkrM4HutBFKaUilBNdyAUVjGpJCQNSkjYZV4JwyfNacFqDbnHIS10D76Gz_d5N8G-Niqla-Sa0HmPFLrko6NexPST2LBl8jEHpSpq9zxTA2IqSavfO6o93tlr-S7sJZg3h41_VJzzrfng |
| CitedBy_id | crossref_primary_10_1109_LGRS_2024_3433481 crossref_primary_10_1016_j_measurement_2024_115432 crossref_primary_10_1016_j_rineng_2024_101874 crossref_primary_10_1109_TGRS_2024_3394750 crossref_primary_10_1061_JPCFEV_CFENG_5008 crossref_primary_10_1177_03611981241248164 crossref_primary_10_3389_fnbot_2024_1382406 crossref_primary_10_1016_j_autcon_2022_104698 crossref_primary_10_32604_cmc_2023_033417 crossref_primary_10_3390_rs15071729 crossref_primary_10_1109_JSTARS_2024_3486535 crossref_primary_10_1109_JSTARS_2024_3366397 crossref_primary_10_1109_LGRS_2024_3417370 crossref_primary_10_1109_TSMC_2024_3429345 crossref_primary_10_3390_app14083521 crossref_primary_10_1016_j_measurement_2022_111281 crossref_primary_10_1109_TGRS_2025_3540974 crossref_primary_10_1016_j_autcon_2024_105552 crossref_primary_10_3390_electronics13234722 crossref_primary_10_3390_jimaging8090250 crossref_primary_10_1007_s42452_025_06791_y crossref_primary_10_1109_TGRS_2024_3373025 crossref_primary_10_1109_ACCESS_2025_3582668 crossref_primary_10_1016_j_eswa_2024_124395 crossref_primary_10_1063_5_0291154 |
| Cites_doi | 10.1016/j.sigpro.2016.05.007 10.1109/ICIP.2018.8451836 10.3390/s16122067 10.1109/TGRS.2019.2937830 10.3390/s19173807 10.1002/chin.200419274 10.1049/cp.2015.1021 10.2528/PIERB12080802 10.1016/j.jneumeth.2020.108885 10.1080/02757259409532206 10.1007/s00521-020-04748-3 10.1109/TASSP.1987.1165131 10.1109/TGRS.2018.2882912 10.1016/j.net.2020.08.020 10.3390/electronics9030541 10.1109/IGARSS.2019.8900173 10.1016/j.chemolab.2020.104063 10.3390/geosciences9020096 10.1007/s12517-018-4035-z 10.1016/j.neucom.2018.09.013 10.1016/j.earscirev.2004.01.004 10.1088/1742-6596/1237/2/022037 10.1016/j.geothermics.2016.06.018 10.2528/PIERM16102903 10.1109/CVPR.2014.366 10.1016/j.jvcir.2019.05.005 10.1016/j.dsp.2020.102724 10.3390/electronics9122034 10.3390/electronics9111804 10.1109/ICCV.2015.178 10.1007/s11042-020-08815-8 10.1016/j.autcon.2020.103198 10.1117/12.690146 10.1109/TPAMI.1982.4767223 10.1109/LSP.2017.2758203 10.1016/j.cpc.2016.08.020 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics10111269 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central (subscription) Technology collection ProQuest One Community College ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics10111269 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c322t-8a42b47f6f68cce0130f6cd1921fc102a080a0823e903c34b931baf192a48fba3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659655000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 30 03:58:59 EST 2025 Tue Nov 18 21:27:55 EST 2025 Sat Nov 29 07:11:27 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-8a42b47f6f68cce0130f6cd1921fc102a080a0823e903c34b931baf192a48fba3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0928-4826 0000-0002-3916-0533 0000-0002-1713-1555 |
| OpenAccessLink | https://www.proquest.com/docview/2539619138?pq-origsite=%requestingapplication% |
| PQID | 2539619138 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2539619138 crossref_citationtrail_10_3390_electronics10111269 crossref_primary_10_3390_electronics10111269 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-06-01 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: 2021-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Kumlu (ref_16) 2020; 35 Zhang (ref_29) 2020; 203 ref_36 ref_12 Bang (ref_35) 2020; 115 ref_32 Lashgari (ref_40) 2020; 346 Hawkins (ref_31) 2004; 35 Wang (ref_19) 2017; 132 Jin (ref_44) 2019; 62 Kuan (ref_15) 1987; 35 Chen (ref_23) 2019; 57 ref_39 ref_38 Guangyin (ref_17) 2019; 41 Wang (ref_46) 2018; 1 Oskooi (ref_9) 2018; 11 Zou (ref_18) 2005; 4 Wang (ref_41) 2020; 32 Faize (ref_5) 2020; 11 Wang (ref_28) 2017; 24 Warren (ref_33) 2016; 209 Diamant (ref_34) 2018; 321 ref_25 ref_47 ref_24 ref_21 Choi (ref_30) 2020; 53 ref_43 ref_42 Riaz (ref_22) 2012; 45 Ioffe (ref_45) 2015; 37 Frost (ref_14) 1982; 4 ref_3 Kumlu (ref_10) 2020; 101 Lee (ref_13) 1994; 8 Neal (ref_2) 2004; 66 Zhu (ref_11) 2017; 53 Yahya (ref_20) 2020; 79 ref_27 Chen (ref_1) 2016; 64 Wu (ref_26) 2019; 1237 ref_8 Yu (ref_37) 2019; 58 ref_4 ref_7 ref_6 |
| References_xml | – volume: 132 start-page: 227 year: 2017 ident: ref_19 article-title: Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet transform publication-title: Signal Process. doi: 10.1016/j.sigpro.2016.05.007 – ident: ref_38 doi: 10.1109/ICIP.2018.8451836 – ident: ref_32 – ident: ref_3 doi: 10.3390/s16122067 – volume: 58 start-page: 519 year: 2019 ident: ref_37 article-title: Attention GANs: Unsupervised Deep Feature Learning for Aerial Scene Classification publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2019.2937830 – ident: ref_21 doi: 10.3390/s19173807 – volume: 35 start-page: 1 year: 2004 ident: ref_31 article-title: The problem of overfitting publication-title: ChemInform doi: 10.1002/chin.200419274 – ident: ref_25 doi: 10.1049/cp.2015.1021 – volume: 45 start-page: 147 year: 2012 ident: ref_22 article-title: Information Theoretic Criterion Based Clutter Reduction for Ground Penetrating Radar publication-title: Prog. Electromagn. Res. B doi: 10.2528/PIERB12080802 – volume: 346 start-page: 108885 year: 2020 ident: ref_40 article-title: Data Augmentation for Deep-Learning-Based Electroencephalography publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2020.108885 – volume: 8 start-page: 313 year: 1994 ident: ref_13 article-title: Speckle filtering of synthetic aperture radar images: A review publication-title: Remote Sens. Rev. doi: 10.1080/02757259409532206 – volume: 32 start-page: 15503 year: 2020 ident: ref_41 article-title: A survey on face data augmentation for the training of deep neural networks publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-04748-3 – volume: 35 start-page: 373 year: 1987 ident: ref_15 article-title: Adaptive restoration of images with speckle publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/TASSP.1987.1165131 – volume: 1 start-page: 42 year: 2018 ident: ref_46 article-title: Optimal Design of ReLU Activation Function in Convolutional Neural Networks publication-title: Inf. Commun. – volume: 35 start-page: 1269 year: 2020 ident: ref_16 article-title: Clutter removal techniques in ground penetrating radar by using non-local means approach publication-title: J. Fac. Eng. Archit. Gazi Univ. – volume: 11 start-page: 179 year: 2020 ident: ref_5 article-title: Radar GPR Application to Explore and Study Archaeological Sites: Case Study publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: ref_42 – volume: 57 start-page: 3271 year: 2019 ident: ref_23 article-title: Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2882912 – volume: 53 start-page: 888 year: 2020 ident: ref_30 article-title: Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.08.020 – ident: ref_8 doi: 10.3390/electronics9030541 – ident: ref_39 doi: 10.1109/IGARSS.2019.8900173 – volume: 203 start-page: 104063 year: 2020 ident: ref_29 article-title: Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2020.104063 – ident: ref_7 doi: 10.3390/geosciences9020096 – volume: 37 start-page: 448 year: 2015 ident: ref_45 article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift publication-title: JMLR – ident: ref_6 – volume: 11 start-page: 677 year: 2018 ident: ref_9 article-title: Attenuation of random noise in GPR data by image processing publication-title: Arab. J. Geosci. doi: 10.1007/s12517-018-4035-z – volume: 321 start-page: 321 year: 2018 ident: ref_34 article-title: GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.013 – volume: 66 start-page: 261 year: 2004 ident: ref_2 article-title: Ground-penetrating radar and its use in sedimentology: Principles, problems and progress publication-title: Earth Sci. Rev. doi: 10.1016/j.earscirev.2004.01.004 – volume: 4 start-page: 855 year: 2005 ident: ref_18 article-title: Study on methods of GPR image de-noising based on multi-wavelets transform publication-title: Acta Simulata Syst. Sin. – volume: 1237 start-page: 022037 year: 2019 ident: ref_26 article-title: An Improved WNNM Algorithm for Image Denoising publication-title: J. Phys. Conf. Ser. doi: 10.1088/1742-6596/1237/2/022037 – volume: 64 start-page: 439 year: 2016 ident: ref_1 article-title: GPR investigation of the near-surface geology in a geothermal river valley using contemporary data decomposition techniques with forward simulation modeling publication-title: Geothermics doi: 10.1016/j.geothermics.2016.06.018 – volume: 53 start-page: 29 year: 2017 ident: ref_11 article-title: A clutter suppression method based on improved principal component selection rule for ground penetrating radar publication-title: Prog. Electromagn. Res. M doi: 10.2528/PIERM16102903 – ident: ref_27 doi: 10.1109/CVPR.2014.366 – volume: 62 start-page: 193 year: 2019 ident: ref_44 article-title: Learning deep CNNs for impulse noise removal in images publication-title: J. Vis. Commun. Image Represent. doi: 10.1016/j.jvcir.2019.05.005 – volume: 101 start-page: 102724 year: 2020 ident: ref_10 article-title: Low complexity clutter removal in GPR images via lattice filters publication-title: Digit. Signal Process. doi: 10.1016/j.dsp.2020.102724 – ident: ref_12 doi: 10.3390/electronics9122034 – ident: ref_4 doi: 10.3390/electronics9111804 – ident: ref_47 doi: 10.1109/ICCV.2015.178 – volume: 79 start-page: 20391 year: 2020 ident: ref_20 article-title: BM3D image denoising algorithm based on an adaptive filtering publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-08815-8 – ident: ref_36 – ident: ref_43 – volume: 115 start-page: 103198 year: 2020 ident: ref_35 article-title: Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103198 – volume: 41 start-page: 234 year: 2019 ident: ref_17 article-title: Application of random noise suppression method based on two-dimensional wavelet transform in GPR data publication-title: Comput. Tech. Geophys. Geochem. Explor. – ident: ref_24 doi: 10.1117/12.690146 – volume: 4 start-page: 157 year: 1982 ident: ref_14 article-title: A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.1982.4767223 – volume: 24 start-page: 1763 year: 2017 ident: ref_28 article-title: SAR Image Despeckling Using a Convolutional Neural Network publication-title: IEEE Signal Process. Lett. doi: 10.1109/LSP.2017.2758203 – volume: 209 start-page: 163 year: 2016 ident: ref_33 article-title: gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2016.08.020 |
| SSID | ssj0000913830 |
| Score | 2.3568752 |
| Snippet | Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1269 |
| SubjectTerms | Algorithms Data augmentation Datasets Dielectric properties Generative adversarial networks Ground penetrating radar Indexes (ratios) Methods Noise Noise reduction Performance indices Principal components analysis Radar Random noise Random variables Signal to noise ratio Training Wavelet transforms |
| Title | GPR B-Scan Image Denoising via Multi-Scale Convolutional Autoencoder with Data Augmentation |
| URI | https://www.proquest.com/docview/2539619138 |
| Volume | 10 |
| WOSCitedRecordID | wos000659655000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: AAdvanced Technologies & Aerospace Database (subscription) customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZYCBN6JQKg-MWDSxSZ0JQVugA1XEQ-IxRI5jo0qQQJt25LfjS10KEmJh9cVW5Dvfnc_29wEcWJtFPndGPdUMKZfc0EQGiqbGaj-w8baRpiXZRLPXE_f3YeQKbkN3rXLqE0tHneYKa-RH_jELbbLvMXHy9k6RNQpPVx2FxjxUECUBqRui48evGgtiXgrWmIANMbu7P5pxyww9ZFn38aLz94D00x-XQeZ89b-_twYrLr0kpxN7WIc5nW3A8jfQwU14uoiuyRm9sXNKuq_WnZC2zvI-1gzIuC9J-SQXxS-atPJs7GwTRx0VOeJepnpAsH5L2rKQtvX51T1gyrbg7rxz27qkjmKBKruSCyok9xPeNIEJhFIajzFNoFIESTPK5h7SJpQSD-N02GCK8SRkXiKNlUsuTCLZNixkeaZ3gDS08JqB9oQ2IWeMSWF8LkNje3GderoK_nSeY-Xwx5EG4yW2-xBUTvyLcqpw-NXpbQK_8ffntal2YrcWh_FMNbt_i_dgyccbK2WNpQYLxWCk92FRjYv-cFCHylmnF13XYf7qo1MvDc22Rd2r6OETikvewA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdSDb_FtDnoz2Daxmx5E1PWxqMviAxQPNU0TWdBWd-uKf8rfaKbb-gDx5sFrpwm0-TKTTCbfB7BqMYt67oy6qhpQLrmhkfQVjY0dfd_GWyeOc7GJaqMhrq6CZh-8lXdhsKyy9Im5o45ThTnyDW-TBXax7zKx_fhEUTUKT1dLCY0eLI7164vdsnW26jU7vmued7B_sXdEC1UBqix4Myok9yJeNb7xhVIaT-6Mr2LkBTPKhltp11ASz5904DDFeBQwN5LG2iUXJpLM9tsPAxzBXoGBZv20ef2R1UGWTcGcHr0RY4Gz8alm03FR193D0uqvIfB7BMjD2sHYf_sh4zBaLKDJTg_xE9Cnk0kY-UKrOAU3h80zskvPLWpI_cE6TFLTSdrCrAjptiTJLx2j-V6TvTTpFrMPe33OUmT2jHWbYIaa1GQm7dO7h-KKVjINl3_ydTNQSdJEzwJxtHCrvnaFNgFnjElhPC4DY1txHbt6DrxyXENVMKyj0Md9aHdaCIbwBzDMwfpHo8cewcjvry-WaAgLb9MJP6Ew_7t5BYaOLk5PwpN643gBhj2sz8kzSotQydrPegkGVTdrddrLBbAJ3P41dN4BT9435w |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqKpygH6AWFhaH9pbrU1ikziHCgHLtiuq1aofEmoPwXHsaqUlWXbDVvw1fh0z2QSoVHHj0GscW0rmecYej98DeIeYJT13wX0TxVxq6XiqQ8Mzh9YPMd56WVaJTUSDgTo9jYdLcN3chaGyysYnVo46KwzlyDvBnohxse8L1XF1WcSw29ufXHBSkKKT1kZOYwGRE3v1B7dvs4_9Ltr6fRD0jr8ffea1wgA3COSSKy2DVEYudKEyxtIpngtNRhxhzmDo1bie0nQWZWNPGCHTWPipdtiupXKpFjjuE1iJcI9J5YTDvZ-3-R3i21TCWxAdCRF7nTtdm5lPCu8BFVnfD4Z_x4IqwPXW_-df8wLW6mU1O1jMg5ewZPNXsHqPbPE1_Po0_MoO-TfEEuufoxtlXZsXI8qVsPlIs-oqMjWPLTsq8nk9J2nUy7Igvs_MThnlrVlXlxqf_j6vL27lG_DjUb5uE5bzIrdbwDyr_Ci0vrIulkIIrVwgdeywl7SZb1sQNDZOTM27TvIf4wT3XwSM5B_AaMGH206TBe3Iw6-3G2QktQ-aJXew2H64-S08Q7wkX_qDkx14HlDRTpVmasNyOb20u_DUzMvRbPqmQjiDs8fGzQ0ghj9K |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPR+B-Scan+Image+Denoising+via+Multi-Scale+Convolutional+Autoencoder+with+Data+Augmentation&rft.jtitle=Electronics+%28Basel%29&rft.au=Luo%2C+Jiabin&rft.au=Lei%2C+Wentai&rft.au=Hou%2C+Feifei&rft.au=Wang%2C+Chenghao&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=10&rft.issue=11&rft.spage=1269&rft_id=info:doi/10.3390%2Felectronics10111269&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |