GPR B-Scan Image Denoising via Multi-Scale Convolutional Autoencoder with Data Augmentation

Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) Jg. 10; H. 11; S. 1269
Hauptverfasser: Luo, Jiabin, Lei, Wentai, Hou, Feifei, Wang, Chenghao, Ren, Qiang, Zhang, Shuo, Luo, Shiguang, Wang, Yiwei, Xu, Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.06.2021
Schlagworte:
ISSN:2079-9292, 2079-9292
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).
AbstractList Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due to the influence of the environment and equipment hardware, which complicates the interpretability of the useful information. Many methods have been proposed to eliminate or suppress the random noise. However, the existing methods have an unsatisfactory denoising effect when the image is severely contaminated by random noise. This paper proposes a multi-scale convolutional autoencoder (MCAE) to denoise GPR data. At the same time, to solve the problem of training dataset insufficiency, we designed the data augmentation strategy, Wasserstein generative adversarial network (WGAN), to increase the training dataset of MCAE. Experimental results conducted on both simulated, generated, and field datasets demonstrated that the proposed scheme has promising performance for image denoising. In terms of three indexes: the peak signal-to-noise ratio (PSNR), the time cost, and the structural similarity index (SSIM), the proposed scheme can achieve better performance of random noise suppression compared with the state-of-the-art competing methods (e.g., CAE, BM3D, WNNM).
Author Xu, Long
Zhang, Shuo
Lei, Wentai
Wang, Yiwei
Luo, Jiabin
Luo, Shiguang
Ren, Qiang
Hou, Feifei
Wang, Chenghao
Author_xml – sequence: 1
  givenname: Jiabin
  orcidid: 0000-0002-1713-1555
  surname: Luo
  fullname: Luo, Jiabin
– sequence: 2
  givenname: Wentai
  orcidid: 0000-0002-3916-0533
  surname: Lei
  fullname: Lei, Wentai
– sequence: 3
  givenname: Feifei
  orcidid: 0000-0002-0928-4826
  surname: Hou
  fullname: Hou, Feifei
– sequence: 4
  givenname: Chenghao
  surname: Wang
  fullname: Wang, Chenghao
– sequence: 5
  givenname: Qiang
  surname: Ren
  fullname: Ren, Qiang
– sequence: 6
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
– sequence: 7
  givenname: Shiguang
  surname: Luo
  fullname: Luo, Shiguang
– sequence: 8
  givenname: Yiwei
  surname: Wang
  fullname: Wang, Yiwei
– sequence: 9
  givenname: Long
  surname: Xu
  fullname: Xu, Long
BookMark eNp9UE1LAzEQDVLBWvsLvAQ8r-Zj3W6OtbW1UFH8OHlYZtOkpqRJTbIV_71b60FEHBhmmPfe8GaOUcd5pxA6peScc0EulFUyBe-MjJRQSlkhDlCXkYHIBBOs86M_Qv0YV6QNQXnJSRe9TO8f8FX2KMHh2RqWCo-V8yYat8RbA_i2scnsYKvwyLutt00y3oHFwyZ55aRfqIDfTXrFY0jQTpdr5RLsSCfoUIONqv9de-h5cv00usnmd9PZaDjPJGcsZSXkrM4HutBFKaUilBNdyAUVjGpJCQNSkjYZV4JwyfNacFqDbnHIS10D76Gz_d5N8G-Niqla-Sa0HmPFLrko6NexPST2LBl8jEHpSpq9zxTA2IqSavfO6o93tlr-S7sJZg3h41_VJzzrfng
CitedBy_id crossref_primary_10_1109_LGRS_2024_3433481
crossref_primary_10_1016_j_measurement_2024_115432
crossref_primary_10_1016_j_rineng_2024_101874
crossref_primary_10_1109_TGRS_2024_3394750
crossref_primary_10_1061_JPCFEV_CFENG_5008
crossref_primary_10_1177_03611981241248164
crossref_primary_10_3389_fnbot_2024_1382406
crossref_primary_10_1016_j_autcon_2022_104698
crossref_primary_10_32604_cmc_2023_033417
crossref_primary_10_3390_rs15071729
crossref_primary_10_1109_JSTARS_2024_3486535
crossref_primary_10_1109_JSTARS_2024_3366397
crossref_primary_10_1109_LGRS_2024_3417370
crossref_primary_10_1109_TSMC_2024_3429345
crossref_primary_10_3390_app14083521
crossref_primary_10_1016_j_measurement_2022_111281
crossref_primary_10_1109_TGRS_2025_3540974
crossref_primary_10_1016_j_autcon_2024_105552
crossref_primary_10_3390_electronics13234722
crossref_primary_10_3390_jimaging8090250
crossref_primary_10_1007_s42452_025_06791_y
crossref_primary_10_1109_TGRS_2024_3373025
crossref_primary_10_1109_ACCESS_2025_3582668
crossref_primary_10_1016_j_eswa_2024_124395
crossref_primary_10_1063_5_0291154
Cites_doi 10.1016/j.sigpro.2016.05.007
10.1109/ICIP.2018.8451836
10.3390/s16122067
10.1109/TGRS.2019.2937830
10.3390/s19173807
10.1002/chin.200419274
10.1049/cp.2015.1021
10.2528/PIERB12080802
10.1016/j.jneumeth.2020.108885
10.1080/02757259409532206
10.1007/s00521-020-04748-3
10.1109/TASSP.1987.1165131
10.1109/TGRS.2018.2882912
10.1016/j.net.2020.08.020
10.3390/electronics9030541
10.1109/IGARSS.2019.8900173
10.1016/j.chemolab.2020.104063
10.3390/geosciences9020096
10.1007/s12517-018-4035-z
10.1016/j.neucom.2018.09.013
10.1016/j.earscirev.2004.01.004
10.1088/1742-6596/1237/2/022037
10.1016/j.geothermics.2016.06.018
10.2528/PIERM16102903
10.1109/CVPR.2014.366
10.1016/j.jvcir.2019.05.005
10.1016/j.dsp.2020.102724
10.3390/electronics9122034
10.3390/electronics9111804
10.1109/ICCV.2015.178
10.1007/s11042-020-08815-8
10.1016/j.autcon.2020.103198
10.1117/12.690146
10.1109/TPAMI.1982.4767223
10.1109/LSP.2017.2758203
10.1016/j.cpc.2016.08.020
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SP
8FD
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
HCIFZ
L7M
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.3390/electronics10111269
DatabaseName CrossRef
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central (subscription)
Technology collection
ProQuest One Community College
ProQuest Central Korea
SciTech Premium Collection
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2079-9292
ExternalDocumentID 10_3390_electronics10111269
GroupedDBID 5VS
8FE
8FG
AAYXX
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
IAO
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
7SP
8FD
ABUWG
AZQEC
DWQXO
L7M
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-8a42b47f6f68cce0130f6cd1921fc102a080a0823e903c34b931baf192a48fba3
IEDL.DBID P5Z
ISICitedReferencesCount 29
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000659655000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2079-9292
IngestDate Sun Nov 30 03:58:59 EST 2025
Tue Nov 18 21:27:55 EST 2025
Sat Nov 29 07:11:27 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-8a42b47f6f68cce0130f6cd1921fc102a080a0823e903c34b931baf192a48fba3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0928-4826
0000-0002-3916-0533
0000-0002-1713-1555
OpenAccessLink https://www.proquest.com/docview/2539619138?pq-origsite=%requestingapplication%
PQID 2539619138
PQPubID 2032404
ParticipantIDs proquest_journals_2539619138
crossref_citationtrail_10_3390_electronics10111269
crossref_primary_10_3390_electronics10111269
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Electronics (Basel)
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Kumlu (ref_16) 2020; 35
Zhang (ref_29) 2020; 203
ref_36
ref_12
Bang (ref_35) 2020; 115
ref_32
Lashgari (ref_40) 2020; 346
Hawkins (ref_31) 2004; 35
Wang (ref_19) 2017; 132
Jin (ref_44) 2019; 62
Kuan (ref_15) 1987; 35
Chen (ref_23) 2019; 57
ref_39
ref_38
Guangyin (ref_17) 2019; 41
Wang (ref_46) 2018; 1
Oskooi (ref_9) 2018; 11
Zou (ref_18) 2005; 4
Wang (ref_41) 2020; 32
Faize (ref_5) 2020; 11
Wang (ref_28) 2017; 24
Warren (ref_33) 2016; 209
Diamant (ref_34) 2018; 321
ref_25
ref_47
ref_24
ref_21
Choi (ref_30) 2020; 53
ref_43
ref_42
Riaz (ref_22) 2012; 45
Ioffe (ref_45) 2015; 37
Frost (ref_14) 1982; 4
ref_3
Kumlu (ref_10) 2020; 101
Lee (ref_13) 1994; 8
Neal (ref_2) 2004; 66
Zhu (ref_11) 2017; 53
Yahya (ref_20) 2020; 79
ref_27
Chen (ref_1) 2016; 64
Wu (ref_26) 2019; 1237
ref_8
Yu (ref_37) 2019; 58
ref_4
ref_7
ref_6
References_xml – volume: 132
  start-page: 227
  year: 2017
  ident: ref_19
  article-title: Noise suppressing and direct wave arrivals removal in GPR data based on Shearlet transform
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2016.05.007
– ident: ref_38
  doi: 10.1109/ICIP.2018.8451836
– ident: ref_32
– ident: ref_3
  doi: 10.3390/s16122067
– volume: 58
  start-page: 519
  year: 2019
  ident: ref_37
  article-title: Attention GANs: Unsupervised Deep Feature Learning for Aerial Scene Classification
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2937830
– ident: ref_21
  doi: 10.3390/s19173807
– volume: 35
  start-page: 1
  year: 2004
  ident: ref_31
  article-title: The problem of overfitting
  publication-title: ChemInform
  doi: 10.1002/chin.200419274
– ident: ref_25
  doi: 10.1049/cp.2015.1021
– volume: 45
  start-page: 147
  year: 2012
  ident: ref_22
  article-title: Information Theoretic Criterion Based Clutter Reduction for Ground Penetrating Radar
  publication-title: Prog. Electromagn. Res. B
  doi: 10.2528/PIERB12080802
– volume: 346
  start-page: 108885
  year: 2020
  ident: ref_40
  article-title: Data Augmentation for Deep-Learning-Based Electroencephalography
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2020.108885
– volume: 8
  start-page: 313
  year: 1994
  ident: ref_13
  article-title: Speckle filtering of synthetic aperture radar images: A review
  publication-title: Remote Sens. Rev.
  doi: 10.1080/02757259409532206
– volume: 32
  start-page: 15503
  year: 2020
  ident: ref_41
  article-title: A survey on face data augmentation for the training of deep neural networks
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04748-3
– volume: 35
  start-page: 373
  year: 1987
  ident: ref_15
  article-title: Adaptive restoration of images with speckle
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
  doi: 10.1109/TASSP.1987.1165131
– volume: 1
  start-page: 42
  year: 2018
  ident: ref_46
  article-title: Optimal Design of ReLU Activation Function in Convolutional Neural Networks
  publication-title: Inf. Commun.
– volume: 35
  start-page: 1269
  year: 2020
  ident: ref_16
  article-title: Clutter removal techniques in ground penetrating radar by using non-local means approach
  publication-title: J. Fac. Eng. Archit. Gazi Univ.
– volume: 11
  start-page: 179
  year: 2020
  ident: ref_5
  article-title: Radar GPR Application to Explore and Study Archaeological Sites: Case Study
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: ref_42
– volume: 57
  start-page: 3271
  year: 2019
  ident: ref_23
  article-title: Adaptive Ground Clutter Reduction in Ground-Penetrating Radar Data Based on Principal Component Analysis
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2882912
– volume: 53
  start-page: 888
  year: 2020
  ident: ref_30
  article-title: Development of de-noised image reconstruction technique using Convolutional AutoEncoder for fast monitoring of fuel assemblies
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2020.08.020
– ident: ref_8
  doi: 10.3390/electronics9030541
– ident: ref_39
  doi: 10.1109/IGARSS.2019.8900173
– volume: 203
  start-page: 104063
  year: 2020
  ident: ref_29
  article-title: Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2020.104063
– ident: ref_7
  doi: 10.3390/geosciences9020096
– volume: 37
  start-page: 448
  year: 2015
  ident: ref_45
  article-title: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
  publication-title: JMLR
– ident: ref_6
– volume: 11
  start-page: 677
  year: 2018
  ident: ref_9
  article-title: Attenuation of random noise in GPR data by image processing
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-018-4035-z
– volume: 321
  start-page: 321
  year: 2018
  ident: ref_34
  article-title: GAN-based Synthetic Medical Image Augmentation for increased CNN Performance in Liver Lesion Classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.013
– volume: 66
  start-page: 261
  year: 2004
  ident: ref_2
  article-title: Ground-penetrating radar and its use in sedimentology: Principles, problems and progress
  publication-title: Earth Sci. Rev.
  doi: 10.1016/j.earscirev.2004.01.004
– volume: 4
  start-page: 855
  year: 2005
  ident: ref_18
  article-title: Study on methods of GPR image de-noising based on multi-wavelets transform
  publication-title: Acta Simulata Syst. Sin.
– volume: 1237
  start-page: 022037
  year: 2019
  ident: ref_26
  article-title: An Improved WNNM Algorithm for Image Denoising
  publication-title: J. Phys. Conf. Ser.
  doi: 10.1088/1742-6596/1237/2/022037
– volume: 64
  start-page: 439
  year: 2016
  ident: ref_1
  article-title: GPR investigation of the near-surface geology in a geothermal river valley using contemporary data decomposition techniques with forward simulation modeling
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2016.06.018
– volume: 53
  start-page: 29
  year: 2017
  ident: ref_11
  article-title: A clutter suppression method based on improved principal component selection rule for ground penetrating radar
  publication-title: Prog. Electromagn. Res. M
  doi: 10.2528/PIERM16102903
– ident: ref_27
  doi: 10.1109/CVPR.2014.366
– volume: 62
  start-page: 193
  year: 2019
  ident: ref_44
  article-title: Learning deep CNNs for impulse noise removal in images
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2019.05.005
– volume: 101
  start-page: 102724
  year: 2020
  ident: ref_10
  article-title: Low complexity clutter removal in GPR images via lattice filters
  publication-title: Digit. Signal Process.
  doi: 10.1016/j.dsp.2020.102724
– ident: ref_12
  doi: 10.3390/electronics9122034
– ident: ref_4
  doi: 10.3390/electronics9111804
– ident: ref_47
  doi: 10.1109/ICCV.2015.178
– volume: 79
  start-page: 20391
  year: 2020
  ident: ref_20
  article-title: BM3D image denoising algorithm based on an adaptive filtering
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-08815-8
– ident: ref_36
– ident: ref_43
– volume: 115
  start-page: 103198
  year: 2020
  ident: ref_35
  article-title: Image augmentation to improve construction resource detection using generative adversarial networks, cut-and-paste, and image transformation techniques
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103198
– volume: 41
  start-page: 234
  year: 2019
  ident: ref_17
  article-title: Application of random noise suppression method based on two-dimensional wavelet transform in GPR data
  publication-title: Comput. Tech. Geophys. Geochem. Explor.
– ident: ref_24
  doi: 10.1117/12.690146
– volume: 4
  start-page: 157
  year: 1982
  ident: ref_14
  article-title: A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.1982.4767223
– volume: 24
  start-page: 1763
  year: 2017
  ident: ref_28
  article-title: SAR Image Despeckling Using a Convolutional Neural Network
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2017.2758203
– volume: 209
  start-page: 163
  year: 2016
  ident: ref_33
  article-title: gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2016.08.020
SSID ssj0000913830
Score 2.3568752
Snippet Ground-penetrating radar (GPR), as a non-invasive instrument, has been widely used in civil engineering. In GPR B-scan images, there may exist random noise due...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1269
SubjectTerms Algorithms
Data augmentation
Datasets
Dielectric properties
Generative adversarial networks
Ground penetrating radar
Indexes (ratios)
Methods
Noise
Noise reduction
Performance indices
Principal components analysis
Radar
Random noise
Random variables
Signal to noise ratio
Training
Wavelet transforms
Title GPR B-Scan Image Denoising via Multi-Scale Convolutional Autoencoder with Data Augmentation
URI https://www.proquest.com/docview/2539619138
Volume 10
WOSCitedRecordID wos000659655000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: AAdvanced Technologies & Aerospace Database (subscription)
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: P5Z
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2079-9292
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913830
  issn: 2079-9292
  databaseCode: PIMPY
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED4BZYCBN6JQKg-MWDSxSZ0JQVugA1XEQ-IxRI5jo0qQQJt25LfjS10KEmJh9cVW5Dvfnc_29wEcWJtFPndGPdUMKZfc0EQGiqbGaj-w8baRpiXZRLPXE_f3YeQKbkN3rXLqE0tHneYKa-RH_jELbbLvMXHy9k6RNQpPVx2FxjxUECUBqRui48evGgtiXgrWmIANMbu7P5pxyww9ZFn38aLz94D00x-XQeZ89b-_twYrLr0kpxN7WIc5nW3A8jfQwU14uoiuyRm9sXNKuq_WnZC2zvI-1gzIuC9J-SQXxS-atPJs7GwTRx0VOeJepnpAsH5L2rKQtvX51T1gyrbg7rxz27qkjmKBKruSCyok9xPeNIEJhFIajzFNoFIESTPK5h7SJpQSD-N02GCK8SRkXiKNlUsuTCLZNixkeaZ3gDS08JqB9oQ2IWeMSWF8LkNje3GderoK_nSeY-Xwx5EG4yW2-xBUTvyLcqpw-NXpbQK_8ffntal2YrcWh_FMNbt_i_dgyccbK2WNpQYLxWCk92FRjYv-cFCHylmnF13XYf7qo1MvDc22Rd2r6OETikvewA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8QwEB50FdSDb_FtDnoz2Daxmx5E1PWxqMviAxQPNU0TWdBWd-uKf8rfaKbb-gDx5sFrpwm0-TKTTCbfB7BqMYt67oy6qhpQLrmhkfQVjY0dfd_GWyeOc7GJaqMhrq6CZh-8lXdhsKyy9Im5o45ThTnyDW-TBXax7zKx_fhEUTUKT1dLCY0eLI7164vdsnW26jU7vmued7B_sXdEC1UBqix4Myok9yJeNb7xhVIaT-6Mr2LkBTPKhltp11ASz5904DDFeBQwN5LG2iUXJpLM9tsPAxzBXoGBZv20ef2R1UGWTcGcHr0RY4Gz8alm03FR193D0uqvIfB7BMjD2sHYf_sh4zBaLKDJTg_xE9Cnk0kY-UKrOAU3h80zskvPLWpI_cE6TFLTSdrCrAjptiTJLx2j-V6TvTTpFrMPe33OUmT2jHWbYIaa1GQm7dO7h-KKVjINl3_ydTNQSdJEzwJxtHCrvnaFNgFnjElhPC4DY1txHbt6DrxyXENVMKyj0Md9aHdaCIbwBzDMwfpHo8cewcjvry-WaAgLb9MJP6Ew_7t5BYaOLk5PwpN643gBhj2sz8kzSotQydrPegkGVTdrddrLBbAJ3P41dN4BT9435w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9wwEB1RqKpygH6AWFhaH9pbrU1ikziHCgHLtiuq1aofEmoPwXHsaqUlWXbDVvw1fh0z2QSoVHHj0GscW0rmecYej98DeIeYJT13wX0TxVxq6XiqQ8Mzh9YPMd56WVaJTUSDgTo9jYdLcN3chaGyysYnVo46KwzlyDvBnohxse8L1XF1WcSw29ufXHBSkKKT1kZOYwGRE3v1B7dvs4_9Ltr6fRD0jr8ffea1wgA3COSSKy2DVEYudKEyxtIpngtNRhxhzmDo1bie0nQWZWNPGCHTWPipdtiupXKpFjjuE1iJcI9J5YTDvZ-3-R3i21TCWxAdCRF7nTtdm5lPCu8BFVnfD4Z_x4IqwPXW_-df8wLW6mU1O1jMg5ewZPNXsHqPbPE1_Po0_MoO-TfEEuufoxtlXZsXI8qVsPlIs-oqMjWPLTsq8nk9J2nUy7Igvs_MThnlrVlXlxqf_j6vL27lG_DjUb5uE5bzIrdbwDyr_Ci0vrIulkIIrVwgdeywl7SZb1sQNDZOTM27TvIf4wT3XwSM5B_AaMGH206TBe3Iw6-3G2QktQ-aJXew2H64-S08Q7wkX_qDkx14HlDRTpVmasNyOb20u_DUzMvRbPqmQjiDs8fGzQ0ghj9K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=GPR+B-Scan+Image+Denoising+via+Multi-Scale+Convolutional+Autoencoder+with+Data+Augmentation&rft.jtitle=Electronics+%28Basel%29&rft.au=Luo%2C+Jiabin&rft.au=Lei%2C+Wentai&rft.au=Hou%2C+Feifei&rft.au=Wang%2C+Chenghao&rft.date=2021-06-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=10&rft.issue=11&rft.spage=1269&rft_id=info:doi/10.3390%2Felectronics10111269&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon