M-ary Phase Position Shift Keying Demodulation Using Stacked Denoising Sparse Autoencoders

A deep-learning based detector for M-ary phase position shift keying (MPPSK) systems is proposed in this paper. The major components of this detector include a special impact filter, a stacked denoising sparse autoencoder (DSAE), which was trained in unsupervised learning to extract features from th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Electronics (Basel) Ročník 11; číslo 8; s. 1233
Hlavní autoři: Lu, Conghui, Chen, Peng, Zhong, Hua, Wang, Mengyuan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.04.2022
Témata:
ISSN:2079-9292, 2079-9292
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A deep-learning based detector for M-ary phase position shift keying (MPPSK) systems is proposed in this paper. The major components of this detector include a special impact filter, a stacked denoising sparse autoencoder (DSAE), which was trained in unsupervised learning to extract features from the modulation signals, and a softmax classifier. The features learned by the stacked DSAE were then used to train the softmax classifier to demodulate the received signals into M classes. The architecture presented herein was trained and tested on a simple dataset extended by adding Gaussian noise only. The results from the theoretical analysis and simulation show that the detection performance of the proposed scheme is superior to that of existing detectors.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11081233