Fast rule mining in ontological knowledge bases with AMIE

Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic programming (ILP) can be used to mine logical rules from these KBs, such as “If two persons are married, then they (usually) live in the same city.”...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The VLDB journal Ročník 24; číslo 6; s. 707 - 730
Hlavní autori: Galárraga, Luis, Teflioudi, Christina, Hose, Katja, Suchanek, Fabian M.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2015
Springer
Predmet:
ISSN:1066-8888, 0949-877X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic programming (ILP) can be used to mine logical rules from these KBs, such as “If two persons are married, then they (usually) live in the same city.” While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open-world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE (Galárraga et al. in WWW, 2013 ) has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE + , extends to areas of mining that were previously beyond reach.
AbstractList Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic Programming (ILP) can be used to mine logical rules from these KBs, such as " If two persons are married , then they (usually) live in the same city ". While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE [16] has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE+, extends to areas of mining that were previously beyond reach.
Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic programming (ILP) can be used to mine logical rules from these KBs, such as “If two persons are married, then they (usually) live in the same city.” While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open-world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE (Galárraga et al. in WWW, 2013 ) has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE + , extends to areas of mining that were previously beyond reach.
Author Suchanek, Fabian M.
Hose, Katja
Galárraga, Luis
Teflioudi, Christina
Author_xml – sequence: 1
  givenname: Luis
  surname: Galárraga
  fullname: Galárraga, Luis
  email: galarrag@enst.fr
  organization: Télécom ParisTech
– sequence: 2
  givenname: Christina
  surname: Teflioudi
  fullname: Teflioudi, Christina
  organization: Max Planck Institute for Informatics
– sequence: 3
  givenname: Katja
  surname: Hose
  fullname: Hose, Katja
  organization: Aalborg University
– sequence: 4
  givenname: Fabian M.
  surname: Suchanek
  fullname: Suchanek, Fabian M.
  organization: Télécom ParisTech
BackLink https://imt.hal.science/hal-01699866$$DView record in HAL
BookMark eNp9kE9LAzEQxYNUsK1-AG-5eogm2T_ZHEtpbaEiiAdvYcxmt6nbRJKtxW9vyurFQ99hBob3m2HeBI2cdwahW0bvGaXiIaYiKkJZQWgmc8Iu0JjKXJJKiLcRGjNalqRKukKTGHeUUs55MUZyCbHH4dAZvLfOuhZbh73rfedbq6HDH84fO1O3Br9DNBEfbb_Fs6f14hpdNtBFc_Pbp-hluXidr8jm-XE9n22IzjjvidBQUyFpw7NKNyAK4FnONRhgpmFJpmY1bSAvWc4MAGSFyRudyboyZTZFd8PSLXTqM9g9hG_lwarVbKNOM8pKKauy_GLJKwavDj7GYBqlbQ-9Td8EsJ1iVJ2iUkNUiSzUKSp1Itk_8u_UOYYPTExe15qgdv4QXEriDPQDBQF8yw
CitedBy_id crossref_primary_10_1109_TKDE_2017_2754499
crossref_primary_10_1109_TKDE_2022_3222827
crossref_primary_10_3233_SW_233508
crossref_primary_10_3390_math11214486
crossref_primary_10_1016_j_websem_2023_100806
crossref_primary_10_1109_ACCESS_2019_2937353
crossref_primary_10_3390_app15031088
crossref_primary_10_3233_SW_190375
crossref_primary_10_1145_3137586_3137592
crossref_primary_10_1016_j_eswa_2019_112948
crossref_primary_10_1007_s10489_021_02947_6
crossref_primary_10_1016_j_neucom_2022_07_043
crossref_primary_10_1145_3686806
crossref_primary_10_1109_TKDE_2019_2941685
crossref_primary_10_3233_SW_200388
crossref_primary_10_1016_j_engappai_2024_108818
crossref_primary_10_1145_3424672
crossref_primary_10_1145_3567829
crossref_primary_10_1145_3409384
crossref_primary_10_1145_3617330
crossref_primary_10_1016_j_knosys_2020_106421
crossref_primary_10_1016_j_neunet_2023_06_028
crossref_primary_10_1109_TBDATA_2025_3544126
crossref_primary_10_1145_3447772
crossref_primary_10_1371_journal_pone_0324059
crossref_primary_10_1145_3210578_3210581
crossref_primary_10_1109_ACCESS_2021_3105183
crossref_primary_10_3233_SW_200413
crossref_primary_10_1016_j_ins_2022_05_027
crossref_primary_10_1016_j_ins_2021_06_040
crossref_primary_10_3390_electronics11060908
crossref_primary_10_1007_s10115_019_01415_5
crossref_primary_10_1016_j_procs_2017_08_345
crossref_primary_10_26599_BDMA_2024_9020070
crossref_primary_10_1109_TKDE_2022_3223858
crossref_primary_10_1016_j_inffus_2025_103228
crossref_primary_10_1145_3702315
crossref_primary_10_1016_j_websem_2021_100661
crossref_primary_10_1007_s10115_019_01332_7
crossref_primary_10_14778_3407790_3407806
crossref_primary_10_1007_s00778_022_00747_z
crossref_primary_10_1109_ACCESS_2025_3563977
crossref_primary_10_1177_29498732251320078
crossref_primary_10_1007_s11257_024_09417_x
crossref_primary_10_1007_s10994_020_05877_5
crossref_primary_10_3389_fdata_2021_759110
crossref_primary_10_1016_j_knosys_2023_110481
crossref_primary_10_1016_j_neucom_2023_126261
crossref_primary_10_1016_j_cosrev_2024_100693
crossref_primary_10_1109_TKDE_2025_3579774
crossref_primary_10_2478_fcds_2020_0011
crossref_primary_10_1007_s00778_018_0523_8
crossref_primary_10_1109_JPROC_2015_2483592
crossref_primary_10_1002_spe_3165
crossref_primary_10_1109_TKDE_2021_3108224
crossref_primary_10_1145_3371315
crossref_primary_10_1016_j_knosys_2022_109232
crossref_primary_10_1145_3639563
crossref_primary_10_1016_j_ipm_2022_103040
crossref_primary_10_1016_j_knosys_2018_03_006
crossref_primary_10_1016_j_knosys_2025_113939
crossref_primary_10_1016_j_knosys_2022_109597
crossref_primary_10_1007_s00521_023_09286_2
crossref_primary_10_1016_j_eswa_2025_128095
crossref_primary_10_1109_ACCESS_2024_3505433
crossref_primary_10_1016_j_asoc_2022_109745
crossref_primary_10_1016_j_ipm_2024_103648
crossref_primary_10_1109_TKDE_2020_3018741
crossref_primary_10_1016_j_engappai_2025_111625
crossref_primary_10_1080_10447318_2024_2332031
crossref_primary_10_1016_j_engappai_2021_104302
crossref_primary_10_1109_TKDE_2022_3177212
crossref_primary_10_3233_SW_223063
crossref_primary_10_1016_j_websem_2018_12_004
crossref_primary_10_1016_j_knosys_2022_108371
crossref_primary_10_1109_ACCESS_2024_3502450
crossref_primary_10_1016_j_knosys_2025_114302
crossref_primary_10_1007_s13218_020_00656_9
crossref_primary_10_1109_TNNLS_2024_3420218
crossref_primary_10_1145_3064173
crossref_primary_10_1007_s11280_022_01042_1
crossref_primary_10_1007_s13042_024_02434_7
crossref_primary_10_1016_j_jestch_2023_101417
crossref_primary_10_1007_s00778_023_00800_5
crossref_primary_10_1016_j_ins_2025_122505
crossref_primary_10_1109_ACCESS_2020_3032756
crossref_primary_10_1145_3733231
crossref_primary_10_1007_s10586_024_04699_7
crossref_primary_10_1145_3749838
crossref_primary_10_1007_s41019_018_0082_4
crossref_primary_10_26599_BDMA_2024_9020063
crossref_primary_10_1016_j_artint_2022_103740
crossref_primary_10_1145_3286488
crossref_primary_10_3233_SW_233276
crossref_primary_10_1109_TKDE_2022_3150080
crossref_primary_10_1016_j_neucom_2024_127425
crossref_primary_10_1016_j_knosys_2025_113321
crossref_primary_10_1016_j_knosys_2022_109172
crossref_primary_10_1007_s11081_024_09880_w
crossref_primary_10_1016_j_ins_2024_121144
crossref_primary_10_1007_s11227_023_05493_9
crossref_primary_10_1016_j_softx_2025_102078
crossref_primary_10_1016_j_neucom_2022_02_011
crossref_primary_10_1016_j_future_2023_12_008
crossref_primary_10_1016_j_jbi_2025_104894
crossref_primary_10_3390_electronics14051012
crossref_primary_10_1016_j_knosys_2025_113906
crossref_primary_10_1016_j_knosys_2017_07_009
crossref_primary_10_1016_j_bdr_2020_100156
crossref_primary_10_14778_3746405_3746410
crossref_primary_10_3233_SW_200404
crossref_primary_10_1016_j_eswa_2022_118969
crossref_primary_10_1016_j_eswa_2025_128289
crossref_primary_10_1016_j_knosys_2022_110001
crossref_primary_10_1016_j_knosys_2023_110686
crossref_primary_10_1145_3644822
crossref_primary_10_3390_math8112090
crossref_primary_10_3390_app13116851
crossref_primary_10_1016_j_ipm_2024_103799
crossref_primary_10_1016_j_inffus_2022_09_020
crossref_primary_10_1016_j_knosys_2023_110787
crossref_primary_10_1016_j_knosys_2021_107910
crossref_primary_10_3390_math13111877
crossref_primary_10_3233_SW_233495
crossref_primary_10_3390_app131910660
crossref_primary_10_1109_TKDE_2021_3101237
crossref_primary_10_3233_SW_233413
crossref_primary_10_1080_09540091_2022_2161480
crossref_primary_10_1145_3748239_3748249
crossref_primary_10_1007_s11704_023_3521_y
crossref_primary_10_1016_j_neucom_2022_12_010
crossref_primary_10_1007_s00778_016_0444_3
crossref_primary_10_3390_a12120265
crossref_primary_10_1016_j_eswa_2025_129660
crossref_primary_10_1007_s11227_022_04519_y
crossref_primary_10_1007_s11280_024_01316_w
crossref_primary_10_1016_j_procs_2020_08_003
Cites_doi 10.4018/jswis.2007040102
10.4018/jswis.2009040102
10.14778/2735508.2735510
10.1007/s10994-006-5833-1
10.1007/978-3-642-21034-1_9
10.1007/978-3-540-76298-0_52
10.1109/ICDM.2001.989534
10.1007/978-3-642-38288-8_10
10.1145/2488388.2488425
10.1145/2187836.2187874
10.1017/S1471068410000098
10.1007/978-3-662-04599-2_8
10.1609/aaai.v24i1.7519
10.14778/2536258.2536260
10.1007/3-540-45728-3_10
10.1007/3-540-63494-0_65
10.1007/978-3-540-30475-3_12
10.1145/170035.170072
10.1007/3-540-45681-3_29
10.1007/978-3-642-21295-6_13
10.1145/2623330.2623623
10.1145/1242572.1242667
10.1007/978-3-540-85928-4_16
10.3233/SW-2010-0007
10.1007/BF03037227
10.1145/775047.775053
10.1145/2396761.2398467
10.1023/A:1009863704807
10.1016/j.knosys.2011.05.009
ContentType Journal Article
Copyright Springer-Verlag Berlin Heidelberg 2015
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2015
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1007/s00778-015-0394-1
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 0949-877X
EndPage 730
ExternalDocumentID oai:HAL:hal-01699866v1
10_1007_s00778_015_0394_1
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
123
1N0
1SB
2.D
203
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
3-Y
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AAKMM
AALFJ
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAWTV
AAYFX
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACM
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADL
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEBYY
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AENSD
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWIH
AFWTZ
AFWXC
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
CCLIF
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EDO
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GUFHI
GXS
H13
HF~
HG5
HG6
HGAVV
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I07
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAS
LHSKQ
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P0-
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VXZ
W23
W48
W7O
WK8
YLTOR
YZZ
Z45
Z7R
Z7X
Z83
Z88
Z8M
Z8R
Z8W
Z92
ZMTXR
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEFXT
AEJOY
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AKRVB
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
PHGZM
PHGZT
PQGLB
1XC
VOOES
ID FETCH-LOGICAL-c322t-7cad0790f238cfa75a2342caea1ef1111ed1d0fa46141eaaa35e4fc39d8e63
IEDL.DBID RSV
ISICitedReferencesCount 334
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365190400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1066-8888
IngestDate Tue Oct 14 21:03:51 EDT 2025
Sat Nov 29 03:17:16 EST 2025
Tue Nov 18 21:16:56 EST 2025
Fri Feb 21 02:37:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 6
Keywords Inductive logic programming
ILP
Knowledge bases
Rule mining
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-7cad0790f238cfa75a2342caea1ef1111ed1d0fa46141eaaa35e4fc39d8e63
ORCID 0000-0001-7189-2796
OpenAccessLink https://imt.hal.science/hal-01699866
PageCount 24
ParticipantIDs hal_primary_oai_HAL_hal_01699866v1
crossref_citationtrail_10_1007_s00778_015_0394_1
crossref_primary_10_1007_s00778_015_0394_1
springer_journals_10_1007_s00778_015_0394_1
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle The International Journal on Very Large Data Bases
PublicationTitle The VLDB journal
PublicationTitleAbbrev The VLDB Journal
PublicationYear 2015
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
References Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.P.: Multivariate prediction for learning on the semantic web. In: ILP (2011)
LisiFABuilding rules on top of ontologies for the semantic web with inductive logic programmingTPLP2008832713001139.680152416609
Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD (2014)
GricePLogic and conversationJ. Syntax Semant.197534158
Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: WWW (2012)
Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI. AAAI Press (2000)
RichardsonMDomingosPMarkov logic networksMach. Learn.2006621–210713610.1007/s10994-006-5833-1
Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: CIKM (2012)
d’AmatoCFanizziNEspositoFInductive learning for the semantic web: what does it buy?Semant. Web201011,25359
DehaspeLToivonenHDiscovery of frequent DATALOG patternsData Min. Knowl. Discov.19993173610.1023/A:1009863704807
HellmannSLehmannJAuerSLearning of OWL class descriptions on very large knowledge basesInt. J. Semant. Web Inf. Syst.200952254810.4018/jswis.2009040102
Technologies, M.: The freebase project. http://freebase.com
ChasseurCPatelJMDesign and evaluation of storage organizations for read-optimized main memory databasesProc. VLDB Endow.20136131474148510.14778/2536258.2536260
ChiYMuntzRRNijssenSKokJNFrequent subtree mining: an overviewFundam. Inf.2004661–226372347731
Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM. IEEE Computer Society (2001)
Nakashole, N., Sozio, M., Suchanek, F., Theobald, M.: Query-time reasoning in uncertain rdf knowledge bases with soft and hard rules. In: Workshop on Very Large Data Search (VLDS) at VLDB (2012)
JozefowskaJLawrynowiczALukaszewskiTThe role of semantics in mining frequent patterns from knowledge bases in description logics with rulesTheory Pract. Log. Program.20101032512891200.68226265383610.1017/S1471068410000098
Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order Horn clauses from web text. In: EMNLP (2010)
Zeng, Q., Patel, J., Page, D.: QuickFOIL: scalable inductive logic programming. In: VLDB (2014)
Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI (2004)
Muggleton, S.: Learning from positive data. In: ILP (1997)
Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI (2010)
DavidJGuilletFBriandHAssociation rule ontology matching approachInt. J. Semant. Web Inf. Syst.200732274910.4018/jswis.2007040102
Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: PKDD (2002)
Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a Web of open data. In: ISWC (2007)
Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)
Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining (1996)
Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW (2013)
NebotVBerlangaRFinding association rules in semantic web dataKnowl Based Syst.2012251516210.1016/j.knosys.2011.05.009
Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: a knowledge base from multilingual wikipedias. In: CIDR (2015)
LehmannJDL-learner: learning concepts In Description logicsJ. Mach. Learn. Res. (JMLR)200910263926421235.68227
d’Amato, C., Bryl, V., Serafini, L.: Data-driven logical reasoning. In: URSW (2012)
Abedjan Z., Naumann F.: Synonym analysis for predicate expansion. In: ESWC (2013)
MuggletonSInverse entailment and progolNew Gener. Comput.1995133&424528610.1007/BF03037227
AdéHRaedtLBruynoogheMDeclarative bias for specific-to-general ilp systemsMach. Learn.199520119154
Völker, J., Niepert, M.: Statistical schema induction. In: ESWC (2011)
Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD (2002)
Dehaspe, L., Toironen, H.: Discovery of relational association rules. In: Relational Data Mining. Springer, New York (2000)
Grimnes, G.A., Edwards, P., Preece, A.D.: Learning meta-descriptions of the FOAF network. In: ISWC (2004)
Word Wide Web Consortium: RDF Primer (W3C Recommendation 2004–02-10). http://www.w3.org/TR/rdf-primer/ (2004)
Goethals, B., Van den Bussche, J.: Relational association rules: getting WARMER. In: Pattern Detection and Discovery, vol. 2447. Springer, Berlin (2002)
Mamer, T., Bryant, C., McCall, J.: L-modified ilp evaluation functions for positive-only biological grammar learning. In: Zelezny, F., Lavrac, N. (eds.) Inductive logic programming, No. 5194 in LNAI. Springer, Berlin (2008)
McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: KR (2000)
SuchanekFMAbiteboulSSenellartPPARIS: probabilistic alignment of relations, instances, and schemaPVLDB201153157168
Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD (1993)
C Chasseur (394_CR8) 2013; 6
L Dehaspe (394_CR15) 1999; 3
FM Suchanek (394_CR39) 2011; 5
394_CR41
394_CR40
394_CR43
394_CR20
394_CR42
Y Chi (394_CR9) 2004; 66
J David (394_CR13) 2007; 3
394_CR16
394_CR38
394_CR18
394_CR17
394_CR11
394_CR33
394_CR14
394_CR36
394_CR35
394_CR2
394_CR1
394_CR7
394_CR6
394_CR5
394_CR4
S Muggleton (394_CR31) 1995; 13
M Richardson (394_CR37) 2006; 62
394_CR30
394_CR10
394_CR32
C d’Amato (394_CR12) 2010; 1
P Grice (394_CR19) 1975; 3
394_CR27
394_CR29
394_CR28
V Nebot (394_CR34) 2012; 25
394_CR45
394_CR22
394_CR44
394_CR24
J Lehmann (394_CR25) 2009; 10
S Hellmann (394_CR21) 2009; 5
J Jozefowska (394_CR23) 2010; 10
FA Lisi (394_CR26) 2008; 8
H Adé (394_CR3) 1995; 20
References_xml – reference: DavidJGuilletFBriandHAssociation rule ontology matching approachInt. J. Semant. Web Inf. Syst.200732274910.4018/jswis.2007040102
– reference: Mamer, T., Bryant, C., McCall, J.: L-modified ilp evaluation functions for positive-only biological grammar learning. In: Zelezny, F., Lavrac, N. (eds.) Inductive logic programming, No. 5194 in LNAI. Springer, Berlin (2008)
– reference: Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD (1993)
– reference: Grimnes, G.A., Edwards, P., Preece, A.D.: Learning meta-descriptions of the FOAF network. In: ISWC (2004)
– reference: Dehaspe, L., Toironen, H.: Discovery of relational association rules. In: Relational Data Mining. Springer, New York (2000)
– reference: Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI (2004)
– reference: Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW (2013)
– reference: Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD (2014)
– reference: Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM. IEEE Computer Society (2001)
– reference: Nakashole, N., Sozio, M., Suchanek, F., Theobald, M.: Query-time reasoning in uncertain rdf knowledge bases with soft and hard rules. In: Workshop on Very Large Data Search (VLDS) at VLDB (2012)
– reference: d’AmatoCFanizziNEspositoFInductive learning for the semantic web: what does it buy?Semant. Web201011,25359
– reference: Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order Horn clauses from web text. In: EMNLP (2010)
– reference: Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: PKDD (2002)
– reference: Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a Web of open data. In: ISWC (2007)
– reference: Goethals, B., Van den Bussche, J.: Relational association rules: getting WARMER. In: Pattern Detection and Discovery, vol. 2447. Springer, Berlin (2002)
– reference: LisiFABuilding rules on top of ontologies for the semantic web with inductive logic programmingTPLP2008832713001139.680152416609
– reference: Völker, J., Niepert, M.: Statistical schema induction. In: ESWC (2011)
– reference: Word Wide Web Consortium: RDF Primer (W3C Recommendation 2004–02-10). http://www.w3.org/TR/rdf-primer/ (2004)
– reference: RichardsonMDomingosPMarkov logic networksMach. Learn.2006621–210713610.1007/s10994-006-5833-1
– reference: LehmannJDL-learner: learning concepts In Description logicsJ. Mach. Learn. Res. (JMLR)200910263926421235.68227
– reference: SuchanekFMAbiteboulSSenellartPPARIS: probabilistic alignment of relations, instances, and schemaPVLDB201153157168
– reference: Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD (2002)
– reference: AdéHRaedtLBruynoogheMDeclarative bias for specific-to-general ilp systemsMach. Learn.199520119154
– reference: Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: WWW (2012)
– reference: MuggletonSInverse entailment and progolNew Gener. Comput.1995133&424528610.1007/BF03037227
– reference: Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.P.: Multivariate prediction for learning on the semantic web. In: ILP (2011)
– reference: Technologies, M.: The freebase project. http://freebase.com
– reference: Abedjan Z., Naumann F.: Synonym analysis for predicate expansion. In: ESWC (2013)
– reference: Muggleton, S.: Learning from positive data. In: ILP (1997)
– reference: ChasseurCPatelJMDesign and evaluation of storage organizations for read-optimized main memory databasesProc. VLDB Endow.20136131474148510.14778/2536258.2536260
– reference: Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: a knowledge base from multilingual wikipedias. In: CIDR (2015)
– reference: Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI. AAAI Press (2000)
– reference: HellmannSLehmannJAuerSLearning of OWL class descriptions on very large knowledge basesInt. J. Semant. Web Inf. Syst.200952254810.4018/jswis.2009040102
– reference: NebotVBerlangaRFinding association rules in semantic web dataKnowl Based Syst.2012251516210.1016/j.knosys.2011.05.009
– reference: GricePLogic and conversationJ. Syntax Semant.197534158
– reference: ChiYMuntzRRNijssenSKokJNFrequent subtree mining: an overviewFundam. Inf.2004661–226372347731
– reference: Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI (2010)
– reference: Zeng, Q., Patel, J., Page, D.: QuickFOIL: scalable inductive logic programming. In: VLDB (2014)
– reference: McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: KR (2000)
– reference: DehaspeLToivonenHDiscovery of frequent DATALOG patternsData Min. Knowl. Discov.19993173610.1023/A:1009863704807
– reference: JozefowskaJLawrynowiczALukaszewskiTThe role of semantics in mining frequent patterns from knowledge bases in description logics with rulesTheory Pract. Log. Program.20101032512891200.68226265383610.1017/S1471068410000098
– reference: Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007)
– reference: Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: CIKM (2012)
– reference: d’Amato, C., Bryl, V., Serafini, L.: Data-driven logical reasoning. In: URSW (2012)
– reference: Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining (1996)
– volume: 3
  start-page: 27
  issue: 2
  year: 2007
  ident: 394_CR13
  publication-title: Int. J. Semant. Web Inf. Syst.
  doi: 10.4018/jswis.2007040102
– ident: 394_CR5
– volume: 3
  start-page: 41
  year: 1975
  ident: 394_CR19
  publication-title: J. Syntax Semant.
– volume: 5
  start-page: 25
  issue: 2
  year: 2009
  ident: 394_CR21
  publication-title: Int. J. Semant. Web Inf. Syst.
  doi: 10.4018/jswis.2009040102
– volume: 20
  start-page: 119
  year: 1995
  ident: 394_CR3
  publication-title: Mach. Learn.
– ident: 394_CR10
– ident: 394_CR30
– ident: 394_CR45
  doi: 10.14778/2735508.2735510
– volume: 62
  start-page: 107
  issue: 1–2
  year: 2006
  ident: 394_CR37
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-5833-1
– ident: 394_CR43
  doi: 10.1007/978-3-642-21034-1_9
– ident: 394_CR6
  doi: 10.1007/978-3-540-76298-0_52
– volume: 8
  start-page: 271
  issue: 3
  year: 2008
  ident: 394_CR26
  publication-title: TPLP
– ident: 394_CR24
  doi: 10.1109/ICDM.2001.989534
– volume: 10
  start-page: 2639
  year: 2009
  ident: 394_CR25
  publication-title: J. Mach. Learn. Res. (JMLR)
– ident: 394_CR28
– ident: 394_CR1
  doi: 10.1007/978-3-642-38288-8_10
– ident: 394_CR17
  doi: 10.1145/2488388.2488425
– ident: 394_CR35
  doi: 10.1145/2187836.2187874
– volume: 10
  start-page: 251
  issue: 3
  year: 2010
  ident: 394_CR23
  publication-title: Theory Pract. Log. Program.
  doi: 10.1017/S1471068410000098
– ident: 394_CR42
– ident: 394_CR44
– ident: 394_CR14
  doi: 10.1007/978-3-662-04599-2_8
– ident: 394_CR7
  doi: 10.1609/aaai.v24i1.7519
– volume: 6
  start-page: 1474
  issue: 13
  year: 2013
  ident: 394_CR8
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/2536258.2536260
– ident: 394_CR18
  doi: 10.1007/3-540-45728-3_10
– ident: 394_CR32
  doi: 10.1007/3-540-63494-0_65
– ident: 394_CR20
  doi: 10.1007/978-3-540-30475-3_12
– ident: 394_CR4
  doi: 10.1145/170035.170072
– ident: 394_CR27
  doi: 10.1007/3-540-45681-3_29
– ident: 394_CR22
  doi: 10.1007/978-3-642-21295-6_13
– volume: 66
  start-page: 26
  issue: 1–2
  year: 2004
  ident: 394_CR9
  publication-title: Fundam. Inf.
– ident: 394_CR16
  doi: 10.1145/2623330.2623623
– ident: 394_CR38
– ident: 394_CR36
– ident: 394_CR40
  doi: 10.1145/1242572.1242667
– ident: 394_CR11
– ident: 394_CR33
– ident: 394_CR29
  doi: 10.1007/978-3-540-85928-4_16
– volume: 1
  start-page: 53
  issue: 1,2
  year: 2010
  ident: 394_CR12
  publication-title: Semant. Web
  doi: 10.3233/SW-2010-0007
– volume: 5
  start-page: 157
  issue: 3
  year: 2011
  ident: 394_CR39
  publication-title: PVLDB
– volume: 13
  start-page: 245
  issue: 3&4
  year: 1995
  ident: 394_CR31
  publication-title: New Gener. Comput.
  doi: 10.1007/BF03037227
– ident: 394_CR41
  doi: 10.1145/775047.775053
– ident: 394_CR2
  doi: 10.1145/2396761.2398467
– volume: 3
  start-page: 7
  issue: 1
  year: 1999
  ident: 394_CR15
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1023/A:1009863704807
– volume: 25
  start-page: 51
  issue: 1
  year: 2012
  ident: 394_CR34
  publication-title: Knowl Based Syst.
  doi: 10.1016/j.knosys.2011.05.009
SSID ssj0002225
Score 2.613612
Snippet Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic...
Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic...
SourceID hal
crossref
springer
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 707
SubjectTerms Computer Science
Database Management
Regular Paper
Web
Title Fast rule mining in ontological knowledge bases with AMIE
URI https://link.springer.com/article/10.1007/s00778-015-0394-1
https://imt.hal.science/hal-01699866
Volume 24
WOSCitedRecordID wos000365190400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 0949-877X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002225
  issn: 1066-8888
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnziyA-KYG0SdPmccjGBB0yRfZW0vSKg1ml7fb3m2RtQVFBX8sllEvufpfc5XcIXQZMhykwQUIqNeEeMBJpykiWBAZtk0QlXLlmE-F4HE2n8qF-x1021e5NStJ56vaxm2WesYVXAaFMcmKOPBsG7SJrjZPH59b92gOMS3EKQczxLmpSmd9N8QmM1l9sKeSXfKiDmWH3Xz-4g7brqBL3V9tgF61Bvoe6TccGXBvwPpJDVVa4WMwBv7rOEHiWY8tgUHtA3F6xYQtvJbbXtLh_fzs4QJPh4OlmROrmCUQbG61IqFVKQ0kzg8k6U2GgfMZ9rUB5kFk_CamX0kxxg88eKKVYADzTTKYRCHaIOvlbDkcIK50ZkE9MXKcFhzCVAsx4H0yYwaOA-j1EGxXGuqYVt90t5nFLiOz0Ehu9xFYvsddDV-2Q9xWnxm_CF2ZdWjnLhj3q38X2myWSkZEQSyN03SxJXNtg-fOUx3-SPkFbvl1TV8JyijpVsYAztKmX1awszt3e-wDhoNEI
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86BX1xfuL8DOKTEkibNG0eh2xsuA2ZQ3wLaZriYFZZu_39JllbUFTQ13IJ5ZK73yV3-R0A1wFRYaIJQyHmClFPExQpTFAaBwZt41jGVLpmE-FoFD0_84fyHXdeVbtXKUnnqevHbpZ5xhZeBQgTTpE58mxQA1i2jm_8-FS7X3uAcSlOxpA53kVVKvO7KT6B0fqLLYX8kg91MNNt_usHd8FOGVXC9mob7IE1ne2DZtWxAZYGfAB4V-YFnC9mGr66zhBwmkHLYFB6QFhfsUELbzm017SwPex3DsG425nc9VDZPAEpY6MFCpVMcMhxajBZpTIMpE-or6SWnk6tn9SJl-BUUoPPnpZSkkDTVBGeRJqRI9DI3jJ9DKBUqQH52MR1ilEdJpxpM97XJsygUYD9FsCVCoUqacVtd4uZqAmRnV6E0YuwehFeC9zUQ95XnBq_CV-ZdanlLBt2rz0Q9pslkuERY0sjdFstiShtMP95ypM_SV-Crd5kOBCD_uj-FGz7dn1dOcsZaBTzhT4Hm2pZTPP5hduHH7eT0-w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RXxxXnFeg_ikBNsmTZvHoSsbzjFUZG8lTVMczDrWbr_fnK4tKCqIr-UklJPLl5Nz8n0IXbpUebGmnHiWUITZmhJfWZQkkWvQNopkxGQhNuENBv5oJIalzmlWVbtXKcnlmwZgaUrzm2mc3NQP34CFBoqwXGJRwYgJf9YYaAZBuP70Um_FEMwU6U7OiQn1_Cqt-V0Xn4Bp9RXKIr_kRgvICZr__tlttFWeNnF7OT120IpOd1GzUnLA5cLeQyKQWY5n84nGb4ViBB6nGJgNyp0R11dvGGAvw3B9i9sPvc4-egw6z7ddUooqEGXWbk48JWPLE1ZisFol0nOlQ5mjpJa2TmD_1LEdW4lkBrdtLaWkrmaJoiL2NacHqJG-p_oQYakSA_6ROe8pzrQXC65Ne0eb4wfzXctpIatyZ6hKunFQvZiENVFy4ZfQ-CUEv4R2C13VTaZLro3fjC_MGNV2wJLdbfdD-AYEM8LnfGGMrqvhCcu1mf3c5dGfrM_RxvAuCPu9wf0x2nRgeIsqlxPUyGdzfYrW1SIfZ7OzYkp-AAmh3NA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+rule+mining+in+ontological+knowledge+bases+with+AMIE&rft.jtitle=The+VLDB+journal&rft.au=Gal%C3%A1rraga%2C+Luis&rft.au=Teflioudi%2C+Christina&rft.au=Hose%2C+Katja&rft.au=Suchanek%2C+Fabian+M.&rft.date=2015-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=24&rft.issue=6&rft.spage=707&rft.epage=730&rft_id=info:doi/10.1007%2Fs00778-015-0394-1&rft.externalDocID=10_1007_s00778_015_0394_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon