Fast rule mining in ontological knowledge bases with AMIE
Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic programming (ILP) can be used to mine logical rules from these KBs, such as “If two persons are married, then they (usually) live in the same city.”...
Saved in:
| Published in: | The VLDB journal Vol. 24; no. 6; pp. 707 - 730 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2015
Springer |
| Subjects: | |
| ISSN: | 1066-8888, 0949-877X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic programming (ILP) can be used to mine logical rules from these KBs, such as “If two persons are married, then they (usually) live in the same city.” While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open-world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE (Galárraga et al. in WWW,
2013
) has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE
+
, extends to areas of mining that were previously beyond reach. |
|---|---|
| AbstractList | Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic Programming (ILP) can be used to mine logical rules from these KBs, such as " If two persons are married , then they (usually) live in the same city ". While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE [16] has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE+, extends to areas of mining that were previously beyond reach. Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic programming (ILP) can be used to mine logical rules from these KBs, such as “If two persons are married, then they (usually) live in the same city.” While ILP is a mature field, mining logical rules from KBs is difficult, because KBs make an open-world assumption. This means that absent information cannot be taken as counterexamples. Our approach AMIE (Galárraga et al. in WWW, 2013 ) has shown how rules can be mined effectively from KBs even in the absence of counterexamples. In this paper, we show how this approach can be optimized to mine even larger KBs with more than 12M statements. Extensive experiments show how our new approach, AMIE + , extends to areas of mining that were previously beyond reach. |
| Author | Suchanek, Fabian M. Hose, Katja Galárraga, Luis Teflioudi, Christina |
| Author_xml | – sequence: 1 givenname: Luis surname: Galárraga fullname: Galárraga, Luis email: galarrag@enst.fr organization: Télécom ParisTech – sequence: 2 givenname: Christina surname: Teflioudi fullname: Teflioudi, Christina organization: Max Planck Institute for Informatics – sequence: 3 givenname: Katja surname: Hose fullname: Hose, Katja organization: Aalborg University – sequence: 4 givenname: Fabian M. surname: Suchanek fullname: Suchanek, Fabian M. organization: Télécom ParisTech |
| BackLink | https://imt.hal.science/hal-01699866$$DView record in HAL |
| BookMark | eNp9kE9LAzEQxYNUsK1-AG-5eogm2T_ZHEtpbaEiiAdvYcxmt6nbRJKtxW9vyurFQ99hBob3m2HeBI2cdwahW0bvGaXiIaYiKkJZQWgmc8Iu0JjKXJJKiLcRGjNalqRKukKTGHeUUs55MUZyCbHH4dAZvLfOuhZbh73rfedbq6HDH84fO1O3Br9DNBEfbb_Fs6f14hpdNtBFc_Pbp-hluXidr8jm-XE9n22IzjjvidBQUyFpw7NKNyAK4FnONRhgpmFJpmY1bSAvWc4MAGSFyRudyboyZTZFd8PSLXTqM9g9hG_lwarVbKNOM8pKKauy_GLJKwavDj7GYBqlbQ-9Td8EsJ1iVJ2iUkNUiSzUKSp1Itk_8u_UOYYPTExe15qgdv4QXEriDPQDBQF8yw |
| CitedBy_id | crossref_primary_10_1109_TKDE_2017_2754499 crossref_primary_10_1109_TKDE_2022_3222827 crossref_primary_10_3233_SW_233508 crossref_primary_10_3390_math11214486 crossref_primary_10_1016_j_websem_2023_100806 crossref_primary_10_1109_ACCESS_2019_2937353 crossref_primary_10_3390_app15031088 crossref_primary_10_3233_SW_190375 crossref_primary_10_1145_3137586_3137592 crossref_primary_10_1016_j_eswa_2019_112948 crossref_primary_10_1007_s10489_021_02947_6 crossref_primary_10_1016_j_neucom_2022_07_043 crossref_primary_10_1145_3686806 crossref_primary_10_1109_TKDE_2019_2941685 crossref_primary_10_3233_SW_200388 crossref_primary_10_1016_j_engappai_2024_108818 crossref_primary_10_1145_3424672 crossref_primary_10_1145_3567829 crossref_primary_10_1145_3409384 crossref_primary_10_1145_3617330 crossref_primary_10_1016_j_knosys_2020_106421 crossref_primary_10_1016_j_neunet_2023_06_028 crossref_primary_10_1109_TBDATA_2025_3544126 crossref_primary_10_1145_3447772 crossref_primary_10_1371_journal_pone_0324059 crossref_primary_10_1145_3210578_3210581 crossref_primary_10_1109_ACCESS_2021_3105183 crossref_primary_10_3233_SW_200413 crossref_primary_10_1016_j_ins_2022_05_027 crossref_primary_10_1016_j_ins_2021_06_040 crossref_primary_10_3390_electronics11060908 crossref_primary_10_1007_s10115_019_01415_5 crossref_primary_10_1016_j_procs_2017_08_345 crossref_primary_10_26599_BDMA_2024_9020070 crossref_primary_10_1109_TKDE_2022_3223858 crossref_primary_10_1016_j_inffus_2025_103228 crossref_primary_10_1145_3702315 crossref_primary_10_1016_j_websem_2021_100661 crossref_primary_10_1007_s10115_019_01332_7 crossref_primary_10_14778_3407790_3407806 crossref_primary_10_1007_s00778_022_00747_z crossref_primary_10_1109_ACCESS_2025_3563977 crossref_primary_10_1177_29498732251320078 crossref_primary_10_1007_s11257_024_09417_x crossref_primary_10_1007_s10994_020_05877_5 crossref_primary_10_3389_fdata_2021_759110 crossref_primary_10_1016_j_knosys_2023_110481 crossref_primary_10_1016_j_neucom_2023_126261 crossref_primary_10_1016_j_cosrev_2024_100693 crossref_primary_10_1109_TKDE_2025_3579774 crossref_primary_10_2478_fcds_2020_0011 crossref_primary_10_1007_s00778_018_0523_8 crossref_primary_10_1109_JPROC_2015_2483592 crossref_primary_10_1002_spe_3165 crossref_primary_10_1109_TKDE_2021_3108224 crossref_primary_10_1145_3371315 crossref_primary_10_1016_j_knosys_2022_109232 crossref_primary_10_1145_3639563 crossref_primary_10_1016_j_ipm_2022_103040 crossref_primary_10_1016_j_knosys_2018_03_006 crossref_primary_10_1016_j_knosys_2025_113939 crossref_primary_10_1016_j_knosys_2022_109597 crossref_primary_10_1007_s00521_023_09286_2 crossref_primary_10_1016_j_eswa_2025_128095 crossref_primary_10_1109_ACCESS_2024_3505433 crossref_primary_10_1016_j_asoc_2022_109745 crossref_primary_10_1016_j_ipm_2024_103648 crossref_primary_10_1109_TKDE_2020_3018741 crossref_primary_10_1016_j_engappai_2025_111625 crossref_primary_10_1080_10447318_2024_2332031 crossref_primary_10_1016_j_engappai_2021_104302 crossref_primary_10_1109_TKDE_2022_3177212 crossref_primary_10_3233_SW_223063 crossref_primary_10_1016_j_websem_2018_12_004 crossref_primary_10_1016_j_knosys_2022_108371 crossref_primary_10_1109_ACCESS_2024_3502450 crossref_primary_10_1016_j_knosys_2025_114302 crossref_primary_10_1007_s13218_020_00656_9 crossref_primary_10_1109_TNNLS_2024_3420218 crossref_primary_10_1145_3064173 crossref_primary_10_1007_s11280_022_01042_1 crossref_primary_10_1007_s13042_024_02434_7 crossref_primary_10_1016_j_jestch_2023_101417 crossref_primary_10_1007_s00778_023_00800_5 crossref_primary_10_1016_j_ins_2025_122505 crossref_primary_10_1109_ACCESS_2020_3032756 crossref_primary_10_1145_3733231 crossref_primary_10_1007_s10586_024_04699_7 crossref_primary_10_1145_3749838 crossref_primary_10_1007_s41019_018_0082_4 crossref_primary_10_26599_BDMA_2024_9020063 crossref_primary_10_1016_j_artint_2022_103740 crossref_primary_10_1145_3286488 crossref_primary_10_3233_SW_233276 crossref_primary_10_1109_TKDE_2022_3150080 crossref_primary_10_1016_j_neucom_2024_127425 crossref_primary_10_1016_j_knosys_2025_113321 crossref_primary_10_1016_j_knosys_2022_109172 crossref_primary_10_1007_s11081_024_09880_w crossref_primary_10_1016_j_ins_2024_121144 crossref_primary_10_1007_s11227_023_05493_9 crossref_primary_10_1016_j_softx_2025_102078 crossref_primary_10_1016_j_neucom_2022_02_011 crossref_primary_10_1016_j_future_2023_12_008 crossref_primary_10_1016_j_jbi_2025_104894 crossref_primary_10_3390_electronics14051012 crossref_primary_10_1016_j_knosys_2025_113906 crossref_primary_10_1016_j_knosys_2017_07_009 crossref_primary_10_1016_j_bdr_2020_100156 crossref_primary_10_14778_3746405_3746410 crossref_primary_10_3233_SW_200404 crossref_primary_10_1016_j_eswa_2022_118969 crossref_primary_10_1016_j_eswa_2025_128289 crossref_primary_10_1016_j_knosys_2022_110001 crossref_primary_10_1016_j_knosys_2023_110686 crossref_primary_10_1145_3644822 crossref_primary_10_3390_math8112090 crossref_primary_10_3390_app13116851 crossref_primary_10_1016_j_ipm_2024_103799 crossref_primary_10_1016_j_inffus_2022_09_020 crossref_primary_10_1016_j_knosys_2023_110787 crossref_primary_10_1016_j_knosys_2021_107910 crossref_primary_10_3390_math13111877 crossref_primary_10_3233_SW_233495 crossref_primary_10_3390_app131910660 crossref_primary_10_1109_TKDE_2021_3101237 crossref_primary_10_3233_SW_233413 crossref_primary_10_1080_09540091_2022_2161480 crossref_primary_10_1145_3748239_3748249 crossref_primary_10_1007_s11704_023_3521_y crossref_primary_10_1016_j_neucom_2022_12_010 crossref_primary_10_1007_s00778_016_0444_3 crossref_primary_10_3390_a12120265 crossref_primary_10_1016_j_eswa_2025_129660 crossref_primary_10_1007_s11227_022_04519_y crossref_primary_10_1007_s11280_024_01316_w crossref_primary_10_1016_j_procs_2020_08_003 |
| Cites_doi | 10.4018/jswis.2007040102 10.4018/jswis.2009040102 10.14778/2735508.2735510 10.1007/s10994-006-5833-1 10.1007/978-3-642-21034-1_9 10.1007/978-3-540-76298-0_52 10.1109/ICDM.2001.989534 10.1007/978-3-642-38288-8_10 10.1145/2488388.2488425 10.1145/2187836.2187874 10.1017/S1471068410000098 10.1007/978-3-662-04599-2_8 10.1609/aaai.v24i1.7519 10.14778/2536258.2536260 10.1007/3-540-45728-3_10 10.1007/3-540-63494-0_65 10.1007/978-3-540-30475-3_12 10.1145/170035.170072 10.1007/3-540-45681-3_29 10.1007/978-3-642-21295-6_13 10.1145/2623330.2623623 10.1145/1242572.1242667 10.1007/978-3-540-85928-4_16 10.3233/SW-2010-0007 10.1007/BF03037227 10.1145/775047.775053 10.1145/2396761.2398467 10.1023/A:1009863704807 10.1016/j.knosys.2011.05.009 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag Berlin Heidelberg 2015 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2015 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1007/s00778-015-0394-1 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 0949-877X |
| EndPage | 730 |
| ExternalDocumentID | oai:HAL:hal-01699866v1 10_1007_s00778_015_0394_1 |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .4S .86 .DC .VR 06D 0R~ 123 1N0 1SB 2.D 203 29R 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 3-Y 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AAKMM AALFJ AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAWTV AAYFX AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACM ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADL ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEBYY AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AENSD AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWIH AFWTZ AFWXC AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BGNMA BSONS CAG CCLIF COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EDO EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GUFHI GXS H13 HF~ HG5 HG6 HGAVV HMJXF HQYDN HRMNR HVGLF HZ~ I07 I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAS LHSKQ LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P0- P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RIG RNI RNS ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VXZ W23 W48 W7O WK8 YLTOR YZZ Z45 Z7R Z7X Z83 Z88 Z8M Z8R Z8W Z92 ZMTXR ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEFXT AEJOY AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP AKRVB ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- PHGZM PHGZT PQGLB 1XC VOOES |
| ID | FETCH-LOGICAL-c322t-7cad0790f238cfa75a2342caea1ef1111ed1d0fa46141eaaa35e4fc39d8e63 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 334 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000365190400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1066-8888 |
| IngestDate | Tue Oct 14 21:03:51 EDT 2025 Sat Nov 29 03:17:16 EST 2025 Tue Nov 18 21:16:56 EST 2025 Fri Feb 21 02:37:42 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 6 |
| Keywords | Inductive logic programming ILP Knowledge bases Rule mining |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-7cad0790f238cfa75a2342caea1ef1111ed1d0fa46141eaaa35e4fc39d8e63 |
| ORCID | 0000-0001-7189-2796 |
| OpenAccessLink | https://imt.hal.science/hal-01699866 |
| PageCount | 24 |
| ParticipantIDs | hal_primary_oai_HAL_hal_01699866v1 crossref_citationtrail_10_1007_s00778_015_0394_1 crossref_primary_10_1007_s00778_015_0394_1 springer_journals_10_1007_s00778_015_0394_1 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-12-01 |
| PublicationDateYYYYMMDD | 2015-12-01 |
| PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg |
| PublicationSubtitle | The International Journal on Very Large Data Bases |
| PublicationTitle | The VLDB journal |
| PublicationTitleAbbrev | The VLDB Journal |
| PublicationYear | 2015 |
| Publisher | Springer Berlin Heidelberg Springer |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
| References | Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.P.: Multivariate prediction for learning on the semantic web. In: ILP (2011) LisiFABuilding rules on top of ontologies for the semantic web with inductive logic programmingTPLP2008832713001139.680152416609 Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD (2014) GricePLogic and conversationJ. Syntax Semant.197534158 Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: WWW (2012) Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI. AAAI Press (2000) RichardsonMDomingosPMarkov logic networksMach. Learn.2006621–210713610.1007/s10994-006-5833-1 Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: CIKM (2012) d’AmatoCFanizziNEspositoFInductive learning for the semantic web: what does it buy?Semant. Web201011,25359 DehaspeLToivonenHDiscovery of frequent DATALOG patternsData Min. Knowl. Discov.19993173610.1023/A:1009863704807 HellmannSLehmannJAuerSLearning of OWL class descriptions on very large knowledge basesInt. J. Semant. Web Inf. Syst.200952254810.4018/jswis.2009040102 Technologies, M.: The freebase project. http://freebase.com ChasseurCPatelJMDesign and evaluation of storage organizations for read-optimized main memory databasesProc. VLDB Endow.20136131474148510.14778/2536258.2536260 ChiYMuntzRRNijssenSKokJNFrequent subtree mining: an overviewFundam. Inf.2004661–226372347731 Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM. IEEE Computer Society (2001) Nakashole, N., Sozio, M., Suchanek, F., Theobald, M.: Query-time reasoning in uncertain rdf knowledge bases with soft and hard rules. In: Workshop on Very Large Data Search (VLDS) at VLDB (2012) JozefowskaJLawrynowiczALukaszewskiTThe role of semantics in mining frequent patterns from knowledge bases in description logics with rulesTheory Pract. Log. Program.20101032512891200.68226265383610.1017/S1471068410000098 Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order Horn clauses from web text. In: EMNLP (2010) Zeng, Q., Patel, J., Page, D.: QuickFOIL: scalable inductive logic programming. In: VLDB (2014) Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI (2004) Muggleton, S.: Learning from positive data. In: ILP (1997) Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI (2010) DavidJGuilletFBriandHAssociation rule ontology matching approachInt. J. Semant. Web Inf. Syst.200732274910.4018/jswis.2007040102 Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: PKDD (2002) Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a Web of open data. In: ISWC (2007) Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007) Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining (1996) Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW (2013) NebotVBerlangaRFinding association rules in semantic web dataKnowl Based Syst.2012251516210.1016/j.knosys.2011.05.009 Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: a knowledge base from multilingual wikipedias. In: CIDR (2015) LehmannJDL-learner: learning concepts In Description logicsJ. Mach. Learn. Res. (JMLR)200910263926421235.68227 d’Amato, C., Bryl, V., Serafini, L.: Data-driven logical reasoning. In: URSW (2012) Abedjan Z., Naumann F.: Synonym analysis for predicate expansion. In: ESWC (2013) MuggletonSInverse entailment and progolNew Gener. Comput.1995133&424528610.1007/BF03037227 AdéHRaedtLBruynoogheMDeclarative bias for specific-to-general ilp systemsMach. Learn.199520119154 Völker, J., Niepert, M.: Statistical schema induction. In: ESWC (2011) Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD (2002) Dehaspe, L., Toironen, H.: Discovery of relational association rules. In: Relational Data Mining. Springer, New York (2000) Grimnes, G.A., Edwards, P., Preece, A.D.: Learning meta-descriptions of the FOAF network. In: ISWC (2004) Word Wide Web Consortium: RDF Primer (W3C Recommendation 2004–02-10). http://www.w3.org/TR/rdf-primer/ (2004) Goethals, B., Van den Bussche, J.: Relational association rules: getting WARMER. In: Pattern Detection and Discovery, vol. 2447. Springer, Berlin (2002) Mamer, T., Bryant, C., McCall, J.: L-modified ilp evaluation functions for positive-only biological grammar learning. In: Zelezny, F., Lavrac, N. (eds.) Inductive logic programming, No. 5194 in LNAI. Springer, Berlin (2008) McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: KR (2000) SuchanekFMAbiteboulSSenellartPPARIS: probabilistic alignment of relations, instances, and schemaPVLDB201153157168 Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD (1993) C Chasseur (394_CR8) 2013; 6 L Dehaspe (394_CR15) 1999; 3 FM Suchanek (394_CR39) 2011; 5 394_CR41 394_CR40 394_CR43 394_CR20 394_CR42 Y Chi (394_CR9) 2004; 66 J David (394_CR13) 2007; 3 394_CR16 394_CR38 394_CR18 394_CR17 394_CR11 394_CR33 394_CR14 394_CR36 394_CR35 394_CR2 394_CR1 394_CR7 394_CR6 394_CR5 394_CR4 S Muggleton (394_CR31) 1995; 13 M Richardson (394_CR37) 2006; 62 394_CR30 394_CR10 394_CR32 C d’Amato (394_CR12) 2010; 1 P Grice (394_CR19) 1975; 3 394_CR27 394_CR29 394_CR28 V Nebot (394_CR34) 2012; 25 394_CR45 394_CR22 394_CR44 394_CR24 J Lehmann (394_CR25) 2009; 10 S Hellmann (394_CR21) 2009; 5 J Jozefowska (394_CR23) 2010; 10 FA Lisi (394_CR26) 2008; 8 H Adé (394_CR3) 1995; 20 |
| References_xml | – reference: DavidJGuilletFBriandHAssociation rule ontology matching approachInt. J. Semant. Web Inf. Syst.200732274910.4018/jswis.2007040102 – reference: Mamer, T., Bryant, C., McCall, J.: L-modified ilp evaluation functions for positive-only biological grammar learning. In: Zelezny, F., Lavrac, N. (eds.) Inductive logic programming, No. 5194 in LNAI. Springer, Berlin (2008) – reference: Agrawal, R., Imieliński, T., Swami, A.: Mining association rules between sets of items in large databases. In: SIGMOD (1993) – reference: Grimnes, G.A., Edwards, P., Preece, A.D.: Learning meta-descriptions of the FOAF network. In: ISWC (2004) – reference: Dehaspe, L., Toironen, H.: Discovery of relational association rules. In: Relational Data Mining. Springer, New York (2000) – reference: Cimiano, P., Hotho, A., Staab, S.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: ECAI (2004) – reference: Galárraga, L.A., Teflioudi, C., Hose, K., Suchanek, F.M.: AMIE: association rule mining under incomplete evidence in ontological knowledge bases. In: WWW (2013) – reference: Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., Strohmann, T., Sun, S., Zhang, W.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: KDD (2014) – reference: Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: ICDM. IEEE Computer Society (2001) – reference: Nakashole, N., Sozio, M., Suchanek, F., Theobald, M.: Query-time reasoning in uncertain rdf knowledge bases with soft and hard rules. In: Workshop on Very Large Data Search (VLDS) at VLDB (2012) – reference: d’AmatoCFanizziNEspositoFInductive learning for the semantic web: what does it buy?Semant. Web201011,25359 – reference: Schoenmackers, S., Etzioni, O., Weld, D.S., Davis, J.: Learning first-order Horn clauses from web text. In: EMNLP (2010) – reference: Maedche, A., Zacharias, V.: Clustering ontology-based metadata in the semantic web. In: PKDD (2002) – reference: Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.G.: DBpedia: a nucleus for a Web of open data. In: ISWC (2007) – reference: Goethals, B., Van den Bussche, J.: Relational association rules: getting WARMER. In: Pattern Detection and Discovery, vol. 2447. Springer, Berlin (2002) – reference: LisiFABuilding rules on top of ontologies for the semantic web with inductive logic programmingTPLP2008832713001139.680152416609 – reference: Völker, J., Niepert, M.: Statistical schema induction. In: ESWC (2011) – reference: Word Wide Web Consortium: RDF Primer (W3C Recommendation 2004–02-10). http://www.w3.org/TR/rdf-primer/ (2004) – reference: RichardsonMDomingosPMarkov logic networksMach. Learn.2006621–210713610.1007/s10994-006-5833-1 – reference: LehmannJDL-learner: learning concepts In Description logicsJ. Mach. Learn. Res. (JMLR)200910263926421235.68227 – reference: SuchanekFMAbiteboulSSenellartPPARIS: probabilistic alignment of relations, instances, and schemaPVLDB201153157168 – reference: Tan, P.N., Kumar, V., Srivastava, J.: Selecting the right interestingness measure for association patterns. In: KDD (2002) – reference: AdéHRaedtLBruynoogheMDeclarative bias for specific-to-general ilp systemsMach. Learn.199520119154 – reference: Nickel, M., Tresp, V., Kriegel, H.P.: Factorizing yago: scalable machine learning for linked data. In: WWW (2012) – reference: MuggletonSInverse entailment and progolNew Gener. Comput.1995133&424528610.1007/BF03037227 – reference: Huang, Y., Tresp, V., Bundschus, M., Rettinger, A., Kriegel, H.P.: Multivariate prediction for learning on the semantic web. In: ILP (2011) – reference: Technologies, M.: The freebase project. http://freebase.com – reference: Abedjan Z., Naumann F.: Synonym analysis for predicate expansion. In: ESWC (2013) – reference: Muggleton, S.: Learning from positive data. In: ILP (1997) – reference: ChasseurCPatelJMDesign and evaluation of storage organizations for read-optimized main memory databasesProc. VLDB Endow.20136131474148510.14778/2536258.2536260 – reference: Mahdisoltani, F., Biega, J., Suchanek, F.M.: Yago3: a knowledge base from multilingual wikipedias. In: CIDR (2015) – reference: Noy, N.F., Musen, M.A.: PROMPT: algorithm and tool for automated ontology merging and alignment. In: AAAI/IAAI. AAAI Press (2000) – reference: HellmannSLehmannJAuerSLearning of OWL class descriptions on very large knowledge basesInt. J. Semant. Web Inf. Syst.200952254810.4018/jswis.2009040102 – reference: NebotVBerlangaRFinding association rules in semantic web dataKnowl Based Syst.2012251516210.1016/j.knosys.2011.05.009 – reference: GricePLogic and conversationJ. Syntax Semant.197534158 – reference: ChiYMuntzRRNijssenSKokJNFrequent subtree mining: an overviewFundam. Inf.2004661–226372347731 – reference: Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Jr., E.R.H., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI (2010) – reference: Zeng, Q., Patel, J., Page, D.: QuickFOIL: scalable inductive logic programming. In: VLDB (2014) – reference: McGuinness, D.L., Fikes, R., Rice, J., Wilder, S.: An environment for merging and testing large ontologies. In: KR (2000) – reference: DehaspeLToivonenHDiscovery of frequent DATALOG patternsData Min. Knowl. Discov.19993173610.1023/A:1009863704807 – reference: JozefowskaJLawrynowiczALukaszewskiTThe role of semantics in mining frequent patterns from knowledge bases in description logics with rulesTheory Pract. Log. Program.20101032512891200.68226265383610.1017/S1471068410000098 – reference: Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: a core of semantic knowledge. In: WWW (2007) – reference: Abedjan, Z., Lorey, J., Naumann, F.: Reconciling ontologies and the web of data. In: CIKM (2012) – reference: d’Amato, C., Bryl, V., Serafini, L.: Data-driven logical reasoning. In: URSW (2012) – reference: Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery of association rules. In: Advances in Knowledge Discovery and Data Mining (1996) – volume: 3 start-page: 27 issue: 2 year: 2007 ident: 394_CR13 publication-title: Int. J. Semant. Web Inf. Syst. doi: 10.4018/jswis.2007040102 – ident: 394_CR5 – volume: 3 start-page: 41 year: 1975 ident: 394_CR19 publication-title: J. Syntax Semant. – volume: 5 start-page: 25 issue: 2 year: 2009 ident: 394_CR21 publication-title: Int. J. Semant. Web Inf. Syst. doi: 10.4018/jswis.2009040102 – volume: 20 start-page: 119 year: 1995 ident: 394_CR3 publication-title: Mach. Learn. – ident: 394_CR10 – ident: 394_CR30 – ident: 394_CR45 doi: 10.14778/2735508.2735510 – volume: 62 start-page: 107 issue: 1–2 year: 2006 ident: 394_CR37 publication-title: Mach. Learn. doi: 10.1007/s10994-006-5833-1 – ident: 394_CR43 doi: 10.1007/978-3-642-21034-1_9 – ident: 394_CR6 doi: 10.1007/978-3-540-76298-0_52 – volume: 8 start-page: 271 issue: 3 year: 2008 ident: 394_CR26 publication-title: TPLP – ident: 394_CR24 doi: 10.1109/ICDM.2001.989534 – volume: 10 start-page: 2639 year: 2009 ident: 394_CR25 publication-title: J. Mach. Learn. Res. (JMLR) – ident: 394_CR28 – ident: 394_CR1 doi: 10.1007/978-3-642-38288-8_10 – ident: 394_CR17 doi: 10.1145/2488388.2488425 – ident: 394_CR35 doi: 10.1145/2187836.2187874 – volume: 10 start-page: 251 issue: 3 year: 2010 ident: 394_CR23 publication-title: Theory Pract. Log. Program. doi: 10.1017/S1471068410000098 – ident: 394_CR42 – ident: 394_CR44 – ident: 394_CR14 doi: 10.1007/978-3-662-04599-2_8 – ident: 394_CR7 doi: 10.1609/aaai.v24i1.7519 – volume: 6 start-page: 1474 issue: 13 year: 2013 ident: 394_CR8 publication-title: Proc. VLDB Endow. doi: 10.14778/2536258.2536260 – ident: 394_CR18 doi: 10.1007/3-540-45728-3_10 – ident: 394_CR32 doi: 10.1007/3-540-63494-0_65 – ident: 394_CR20 doi: 10.1007/978-3-540-30475-3_12 – ident: 394_CR4 doi: 10.1145/170035.170072 – ident: 394_CR27 doi: 10.1007/3-540-45681-3_29 – ident: 394_CR22 doi: 10.1007/978-3-642-21295-6_13 – volume: 66 start-page: 26 issue: 1–2 year: 2004 ident: 394_CR9 publication-title: Fundam. Inf. – ident: 394_CR16 doi: 10.1145/2623330.2623623 – ident: 394_CR38 – ident: 394_CR36 – ident: 394_CR40 doi: 10.1145/1242572.1242667 – ident: 394_CR11 – ident: 394_CR33 – ident: 394_CR29 doi: 10.1007/978-3-540-85928-4_16 – volume: 1 start-page: 53 issue: 1,2 year: 2010 ident: 394_CR12 publication-title: Semant. Web doi: 10.3233/SW-2010-0007 – volume: 5 start-page: 157 issue: 3 year: 2011 ident: 394_CR39 publication-title: PVLDB – volume: 13 start-page: 245 issue: 3&4 year: 1995 ident: 394_CR31 publication-title: New Gener. Comput. doi: 10.1007/BF03037227 – ident: 394_CR41 doi: 10.1145/775047.775053 – ident: 394_CR2 doi: 10.1145/2396761.2398467 – volume: 3 start-page: 7 issue: 1 year: 1999 ident: 394_CR15 publication-title: Data Min. Knowl. Discov. doi: 10.1023/A:1009863704807 – volume: 25 start-page: 51 issue: 1 year: 2012 ident: 394_CR34 publication-title: Knowl Based Syst. doi: 10.1016/j.knosys.2011.05.009 |
| SSID | ssj0002225 |
| Score | 2.613612 |
| Snippet | Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive logic... Recent advances in information extraction have led to huge knowledge bases (KBs), which capture knowledge in a machine-readable format. Inductive Logic... |
| SourceID | hal crossref springer |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 707 |
| SubjectTerms | Computer Science Database Management Regular Paper Web |
| Title | Fast rule mining in ontological knowledge bases with AMIE |
| URI | https://link.springer.com/article/10.1007/s00778-015-0394-1 https://imt.hal.science/hal-01699866 |
| Volume | 24 |
| WOSCitedRecordID | wos000365190400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 0949-877X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002225 issn: 1066-8888 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA86ffDF-YnziyA-KYF-5KN5HLIxQYdMkb2VLE1wMKus3f5-c1lbUFTQ13IN5S53v17u8juELqlUGTNKEK6ZITQJKJko6dw9sswaqyPOlB82IYbDZDyWD9U97qLudq9Lkj5SN5fdgHkGGq8YCWJJiUt5NhzaJeCNo8fnJvxCAuNLnJwTl94ldSnzuyU-gdH6C7RCfqmHepjpt__1gTtou_qrxN3VNthFaybfQ-16YgOuHHgfyb4qSjxfzAx-9ZMh8DTHwGBQRUDcHLFhgLcCwzEt7t7f9g7QqN97uhmQangC0c5HSyK0ygIhA-swWVslmIpiGmllVGgsxEmThVlgFXX4HBqlVMwMtTqWWWJ4fIha-VtujhCmTGppLQdqLOq5aCYiENr5uRSTSOkOCmoVprqiFYfpFrO0IUT2ekmdXlLQSxp20FXzyvuKU-M34Qtnl0YO2LAH3bsUngGRjEw4Xzqh69okaeWDxc9LHv9J-gRtRWBT38JyilrlfGHO0KZeltNifu733gcWgdDZ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aBb1Yn1ifQTwpgX3ksTkWaWmxLVKLeAtpNsFCrdLd9vebpLsLigp6XWbDMpOZbycz-QaAa8xlSrRkiCqiEU4CjMaSW3ePDDHaqIgS6YdNsMEgeX7mD8U97qzsdi9Lkj5SV5fdHPOMa7wiKIg5Rjbl2cAWsFwf3_DxqQq_LoHxJU5KkU3vkrKU-d0Sn8Bo_cW1Qn6ph3qYadf_9YG7YKf4q4TN1TbYA2t6tg_q5cQGWDjwAeBtmeVwvphq-OonQ8DJDDoGgyICwuqIDTp4y6A7poXNfrd1CIbt1uiug4rhCUhZH80RUzINGA-MxWRlJCMyinGkpJahNi5O6jRMAyOxxedQSyljorFRMU8TTeMjUJu9zfQxgJhwxY2hjhoLey6aMQuYsn7O2TiSqgGCUoVCFbTibrrFVFSEyF4vwupFOL2IsAFuqlfeV5wavwlfWbtUco4Nu9PsCffMEcnwhNKlFbotTSIKH8x-XvLkT9KXYKsz6vdErzu4PwXbkbOvb2c5A7V8vtDnYFMt80k2v_D78APqMdO9 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXxxfuL8DOKTEuxH0jaPQzc2nGOoyN5KliY4mHWs3f5-c1lbUFQQX8s1lLvcXS93-f0QuqRcJEyJkASSKUIjh5KR4MbdPc200tILmLBkE2G_Hw2HfFDwnGbltHvZklzeaQCUpjS_mSb6prr4Big0MITFiONzSkz5s0aBMwjK9aeXKhRDMWPbnUFATKkXlW3N75b4lJhWX2Es8ktv1Kacdv3fH7uNtoq_Tdxcbo8dtKLSXVQvmRxw4dh7iLdFluPZfKLwm2WMwOMUA7JBERlxdfSGIe1lGI5vcfOh29pHj-3W822HFKQKRBrfzUkoReKE3NEmV0stQiY8n3pSKOEqDfFTJW7iaEFN3naVEMJnimrp8yRSgX-Aaul7qg4RpoxLrnUAkFnUYtSMQieUxv95OPKEbCCnVGcsC7hxYL2YxBVQstVLbPQSg15it4GuqlemS6yN34QvjI0qOUDJ7jR7MTwDgBkeBcHCCF2X5okL38x-XvLoT9LnaGNw14573f79Mdr0wLx2yuUE1fLZXJ2idbnIx9nszG7JD0Im3KE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+rule+mining+in+ontological+knowledge+bases+with+AMIE&rft.jtitle=The+VLDB+journal&rft.au=Gal%C3%A1rraga%2C+Luis&rft.au=Teflioudi%2C+Christina&rft.au=Hose%2C+Katja&rft.au=Suchanek%2C+Fabian+M.&rft.date=2015-12-01&rft.issn=1066-8888&rft.eissn=0949-877X&rft.volume=24&rft.issue=6&rft.spage=707&rft.epage=730&rft_id=info:doi/10.1007%2Fs00778-015-0394-1&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00778_015_0394_1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1066-8888&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1066-8888&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1066-8888&client=summon |