On Performance of Sparse Fast Fourier Transform Algorithms Using the Aliasing Filter
Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More than twenty different sFFT algorithms compute discrete Fourier transform (DFT) by their unique methods so far. In order to use them properly...
Saved in:
| Published in: | Electronics (Basel) Vol. 10; no. 9; p. 1117 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Basel
MDPI AG
01.05.2021
|
| Subjects: | |
| ISSN: | 2079-9292, 2079-9292 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More than twenty different sFFT algorithms compute discrete Fourier transform (DFT) by their unique methods so far. In order to use them properly, the urgent topic of great concern is how to analyze and evaluate the performance of these algorithms in theory and practice. This paper mainly discusses the technology and performance of sFFT algorithms using the aliasing filter. In the first part, the paper introduces the three frameworks: the one-shot framework based on the compressed sensing (CS) solver, the peeling framework based on the bipartite graph and the iterative framework based on the binary tree search. Then, we obtain the conclusion of the performance of six corresponding algorithms: the sFFT-DT1.0, sFFT-DT2.0, sFFT-DT3.0, FFAST, R-FFAST, and DSFFT algorithms in theory. In the second part, we make two categories of experiments for computing the signals of different SNRs, different lengths, and different sparsities by a standard testing platform and record the run time, the percentage of the signal sampled, and the L0, L1, and L2 errors both in the exactly sparse case and the general sparse case. The results of these performance analyses are our guide to optimize these algorithms and use them selectively. |
|---|---|
| AbstractList | Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More than twenty different sFFT algorithms compute discrete Fourier transform (DFT) by their unique methods so far. In order to use them properly, the urgent topic of great concern is how to analyze and evaluate the performance of these algorithms in theory and practice. This paper mainly discusses the technology and performance of sFFT algorithms using the aliasing filter. In the first part, the paper introduces the three frameworks: the one-shot framework based on the compressed sensing (CS) solver, the peeling framework based on the bipartite graph and the iterative framework based on the binary tree search. Then, we obtain the conclusion of the performance of six corresponding algorithms: the sFFT-DT1.0, sFFT-DT2.0, sFFT-DT3.0, FFAST, R-FFAST, and DSFFT algorithms in theory. In the second part, we make two categories of experiments for computing the signals of different SNRs, different lengths, and different sparsities by a standard testing platform and record the run time, the percentage of the signal sampled, and the L0, L1, and L2 errors both in the exactly sparse case and the general sparse case. The results of these performance analyses are our guide to optimize these algorithms and use them selectively. |
| Author | Li, Bin Jiang, Zhikang Chen, Jie |
| Author_xml | – sequence: 1 givenname: Bin surname: Li fullname: Li, Bin – sequence: 2 givenname: Zhikang orcidid: 0000-0002-6213-3357 surname: Jiang fullname: Jiang, Zhikang – sequence: 3 givenname: Jie surname: Chen fullname: Chen, Jie |
| BookMark | eNp9kE9LAzEQxYNUsNZ-Ai8Bz6v5s9skx1JcFQoVbM_LdHe2TdkmNUkPfnu31oOIeJqZx-_NDO-aDJx3SMgtZ_dSGvaAHdYpeGfryBkznHN1QYaCKZMZYcTgR39FxjHuGDthUks2JMuFo68YWh_24GqkvqVvBwgRaQkx0dIfg8VAlwFcPEF02m18sGm7j3QVrdvQtMVetPA1lLZLGG7IZQtdxPF3HZFV-bicPWfzxdPLbDrPailEypTU0ExaptSkzdeNFKA4Ry3FGhGgQQ4TZnodddMI06p13uTAUekiRwW1liNyd957CP79iDFVu_5f15-sRCG0KLTgRU_JM1UHH2PAtjoEu4fwUXFWnRKs_kiwd5lfrtomSNa7FMB2_3o_AaEpfV4 |
| CitedBy_id | crossref_primary_10_1109_JSEN_2023_3268295 crossref_primary_10_1109_JSEN_2024_3370234 crossref_primary_10_3390_electronics11152291 crossref_primary_10_1007_s00034_022_01989_6 crossref_primary_10_23919_JSEE_2024_000015 crossref_primary_10_3390_s21237808 crossref_primary_10_1109_ACCESS_2021_3095071 |
| Cites_doi | 10.1137/1.9781611973099.93 10.1109/FOCS.2017.66 10.1137/1.9781611975482.168 10.1109/ISIT.2013.6620269 10.1109/ACCESS.2020.2989327 10.1109/IPDPS.2016.95 10.1109/TSP.2018.2878546 10.1109/29.45547 10.1016/j.acha.2015.04.002 10.1007/s00041-018-9616-4 10.1109/ICASSP.2013.6638743 10.1109/TIT.2017.2746568 10.1137/1.9781611973402.36 10.1007/s11075-017-0370-5 10.1109/ISSCC.2014.6757512 10.1007/s10208-009-9057-1 10.1142/S1793536913500039 10.1109/TSP.2017.2740198 10.4310/CMS.2007.v5.n4.a13 10.1109/ACCESS.2018.2853180 10.1109/TIT.1964.1053699 10.1016/j.acha.2012.03.007 10.1016/j.cam.2017.03.019 10.1145/2213977.2214029 10.1109/ICASSP.2019.8682063 10.1016/0377-0427(88)90386-X 10.1109/MSP.2014.2329131 10.1090/S0025-5718-1965-0178586-1 10.1109/29.56027 10.1109/SiPS.2014.6986055 10.1109/MSP.2007.915000 10.1007/s00034-019-01136-8 10.1007/s11075-015-0028-0 10.17230/ingciencia.11.22.4 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI |
| DOI | 10.3390/electronics10091117 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central Korea SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics10091117 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI |
| ID | FETCH-LOGICAL-c322t-738ad6f0776f4bd32a711e832beeaade1a609bd3e8dd29f7b4d4a1e7854e7ac83 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000649987100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Sun Nov 09 06:07:13 EST 2025 Sat Nov 29 07:14:30 EST 2025 Tue Nov 18 22:24:36 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-738ad6f0776f4bd32a711e832beeaade1a609bd3e8dd29f7b4d4a1e7854e7ac83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-6213-3357 |
| OpenAccessLink | https://www.proquest.com/docview/2528258215?pq-origsite=%requestingapplication% |
| PQID | 2528258215 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2528258215 crossref_primary_10_3390_electronics10091117 crossref_citationtrail_10_3390_electronics10091117 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-05-01 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: 2021-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Iwen (ref_16) 2010; 10 Plonka (ref_33) 2016; 71 Li (ref_8) 2020; 8 Plonka (ref_34) 2017; 321 ref_14 ref_36 ref_13 Chien (ref_35) 1964; 10 ref_11 ref_10 Christlieb (ref_19) 2016; 40 ref_30 Cooley (ref_1) 1965; 19 ref_18 ref_15 ref_37 Iwen (ref_17) 2013; 34 Chen (ref_25) 2017; 65 Wang (ref_29) 2019; 67 Kay (ref_38) 1989; 37 Gilbert (ref_4) 2008; 25 Gilbert (ref_21) 2014; 31 Gilbert (ref_2) 2002; 2 ref_23 Kumar (ref_32) 2019; 38 ref_22 Iwen (ref_3) 2007; 5 Merhi (ref_20) 2019; 25 Pang (ref_31) 2018; 6 ref_28 ref_27 ref_26 ref_9 Pawar (ref_12) 2018; 64 (ref_24) 2015; 11 ref_5 ref_7 ref_6 |
| References_xml | – ident: ref_7 – ident: ref_5 doi: 10.1137/1.9781611973099.93 – ident: ref_22 doi: 10.1109/FOCS.2017.66 – ident: ref_30 doi: 10.1137/1.9781611975482.168 – ident: ref_11 doi: 10.1109/ISIT.2013.6620269 – volume: 8 start-page: 79134 year: 2020 ident: ref_8 article-title: On performance of sparse fast Fourier transform algorithms using the flat window filter publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2989327 – ident: ref_27 doi: 10.1109/IPDPS.2016.95 – volume: 67 start-page: 54 year: 2019 ident: ref_29 article-title: Multidimensional Sparse Fourier Transform Based on the Fourier Projection-Slice Theorem publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2018.2878546 – volume: 37 start-page: 1987 year: 1989 ident: ref_38 article-title: A Fast and Accurate Single Frequency Estimator publication-title: IEEE Trans. Acoust. Speech Signal Process. doi: 10.1109/29.45547 – volume: 40 start-page: 553 year: 2016 ident: ref_19 article-title: A multiscale sub-linear time Fourier algorithm for noisy data publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2015.04.002 – volume: 25 start-page: 751 year: 2019 ident: ref_20 article-title: A New Class of Fully Discrete Sparse Fourier Transforms: Faster Stable Implementations with Guarantees publication-title: J. Fourier Anal. Appl. doi: 10.1007/s00041-018-9616-4 – ident: ref_9 doi: 10.1109/ICASSP.2013.6638743 – volume: 64 start-page: 429 year: 2018 ident: ref_12 article-title: FFAST: An algorithm for computing an exactly k-Sparse DFT in O(k log k) time publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2017.2746568 – ident: ref_23 doi: 10.1137/1.9781611973402.36 – ident: ref_15 doi: 10.1007/s11075-017-0370-5 – ident: ref_28 doi: 10.1109/ISSCC.2014.6757512 – volume: 10 start-page: 303 year: 2010 ident: ref_16 article-title: Combinatorial sublinear-time Fourier algorithms publication-title: Found. Comput. Math. doi: 10.1007/s10208-009-9057-1 – ident: ref_18 doi: 10.1142/S1793536913500039 – volume: 65 start-page: 5716 year: 2017 ident: ref_25 article-title: On Performance of Sparse Fast Fourier Transform and Enhancement Algorithm publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2017.2740198 – volume: 5 start-page: 981 year: 2007 ident: ref_3 article-title: Empirical evaluation of a sub-linear time sparse DFT algorithm publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2007.v5.n4.a13 – volume: 6 start-page: 37828 year: 2018 ident: ref_31 article-title: High-speed target detection algorithm based on sparse Fourier transform publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2853180 – volume: 10 start-page: 357 year: 1964 ident: ref_35 article-title: Cyclic Decoding Procedures for Bose-Chaudhuri-Hocquenghem Codes publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.1964.1053699 – ident: ref_10 – volume: 34 start-page: 57 year: 2013 ident: ref_17 article-title: Improved approximation guarantees for sublinear-time Fourier algorithms publication-title: Appl. Comput. Harmon. Anal. doi: 10.1016/j.acha.2012.03.007 – volume: 321 start-page: 532 year: 2017 ident: ref_34 article-title: A sparse fast Fourier algorithm for real non-negative vectors publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2017.03.019 – ident: ref_6 doi: 10.1145/2213977.2214029 – ident: ref_14 doi: 10.1109/ICASSP.2019.8682063 – ident: ref_36 doi: 10.1016/0377-0427(88)90386-X – ident: ref_13 – volume: 31 start-page: 91 year: 2014 ident: ref_21 article-title: Recent Developments in the Sparse Fourier Transform publication-title: Signal Processing Mag. doi: 10.1109/MSP.2014.2329131 – volume: 19 start-page: 297 year: 1965 ident: ref_1 article-title: An Algorithm for the Machine Calculation of Complex Fourier Series publication-title: Math. Comput. doi: 10.1090/S0025-5718-1965-0178586-1 – ident: ref_37 doi: 10.1109/29.56027 – ident: ref_26 doi: 10.1109/SiPS.2014.6986055 – volume: 2 start-page: 152 year: 2002 ident: ref_2 article-title: Near-optimal sparse Fourier representations via sampling publication-title: Conf. Proc. Annu. ACM Symp. Theory Comput. – volume: 25 start-page: 57 year: 2008 ident: ref_4 article-title: A tutorial on fast Fourier sampling: How to apply it to problems publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2007.915000 – volume: 38 start-page: 5665 year: 2019 ident: ref_32 article-title: 50 Years of FFT Algorithms and Applications publication-title: Circuits Syst. Signal Process. doi: 10.1007/s00034-019-01136-8 – volume: 71 start-page: 889 year: 2016 ident: ref_33 article-title: A deterministic sparse FFT algorithm for vectors with small support publication-title: Numer. Algorithms doi: 10.1007/s11075-015-0028-0 – volume: 11 start-page: 73 year: 2015 ident: ref_24 article-title: Efficient Software Implementation of the Nearly Optimal Sparse Fast Fourier Transform for the Noisy Case publication-title: Ingeniería y Ciencia doi: 10.17230/ingciencia.11.22.4 |
| SSID | ssj0000913830 |
| Score | 2.2400155 |
| Snippet | Computing the sparse fast Fourier transform (sFFT) has emerged as a critical topic for a long time because of its high efficiency and wide practicability. More... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1117 |
| SubjectTerms | Algorithms Aliasing Computation Experiments Fast Fourier transformations Fourier transforms Graph theory Iterative methods Magnetic resonance imaging Performance evaluation Run time (computers) |
| Title | On Performance of Sparse Fast Fourier Transform Algorithms Using the Aliasing Filter |
| URI | https://www.proquest.com/docview/2528258215 |
| Volume | 10 |
| WOSCitedRecordID | wos000649987100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BYYCBN6JQKg-MRDSx0zgTKqgRDJQIigQskeMHVCppaQIjv51zmlKQEAtjbEeJfL6Xff4-gCNBjQiZzx3hUkxQjGk7qadTx5OYxikvTJmQJdlE0Ovx-_swrjbc8qqscmYTS0OtRtLukZ94vr1lydFDnY5fHcsaZU9XKwqNRViyKAmWuiH2H7_2WCzmJaetKdgQxez-ZM4tk7u22y2Jyr45pJ_2uHQy0fp_f28D1qrwknSm62ETFnS2BavfQAe3oX-dkXh-XYCMDLkdY3qrSSTygkRTEjvSn0W0pDN8wi8Vzy85KQsMCMaM2DgQ5UM0sOftO3AXdfvnF07FreBIVOHCCSgXqm0smI9hqaKeCFxXo3qnWguhtCvarRDbNVcoMROkTDHh6oD7TAdCcroLtWyU6T0gqMEtHuhQSsaYojx1lcHBPg19g9GmqIM3m-BEVsDjlv9imGACYqWS_CKVOhx_vTSe4m78PbwxE0tSKWGezGWy_3f3Aax4tlSlrGNsQK2YvOlDWJbvxSCfNGHprNuLb5qwePXRbZYrDNviy6v44RN-Ot5z |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2CoRJ0AZSHyqt40e6ImNjOxFkghICIETAdqYMEq-D4ASPRmSkJIH6Kb-Q6DwYkxI5Fl7GdKI6P7sO5Pgfgp2RWRjwQnvQZJijWtryUmtSjCtM4TaOUS1WITYSdjjg_j7oT8FSfhXFllbVNLAy1Hiq3R75NA3fKUqCH2h3985xqlPu7WktolLA4No8PmLJlO-0DXN9flMaHvf0jr1IV8BSCN_dCJqRuWUdjY3mqGZWh7xsEdmqMlNr4stWMsN0Ije9qw5RrLn0TioCbUCrB8LmTMMUd2Bsw1W2fdi9ednUcy6ZgzZLeiLGouT1Ws8l81-0X0mivXOBbD1C4tXjuf_sg8zBbBdBkr0T8N5gwgwX4-opWcRF6vwekOz4QQYaW_BlhAm9ILLOcxKVMH-nVMTvZu7nCmeXXfzNSlFAQjIqxsS-Li7jvKgqW4OxTprUMjcFwYL4DQRvVFKGJlOKcayZSX1scHLAosBhPyxWg9YImqqJWdwofNwmmWA4FyTsoWIGtl5tGJbPIx8PXaxgklZnJkjEGVj_u3oTpo97pSXLS7hyvwQx1hTlF1eY6NPLbO7MBX9R93s9uf1SIJnD52Zh5BrbTOuI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTuMwFL1iAI1gwWMGxBsvYDdRG9tpnAVCCIhAoFKJjoRmk3H8gErQFhJA_Bpfx3UeFCTEjgXLOE4Uxyf34RzfA7AlmZURD4QnfYYJirUtL6Um9ajCNE7TKOVSFWITYbstLi6izhg813thHK2ytomFodYD5dbIGzRwuywFeqiGrWgRnYN4d3jrOQUp96e1ltMoIXJinh4xfct2jg9wrrcpjQ-7-0depTDgKQRy7oVMSN2yrqSN5almVIa-bxDkqTFSauPLVjPCdiM0PrcNU6659E0oAm5CqQTD-_6AiRBzTEcn7AT_Xtd3XL1NwZploSPGomZjpGuT-e60X4ikvXGG731B4eDi2e_8auZgpgqryV75HczDmOn_guk3xRZ_Q_esTzqjbRJkYMn5ENN6Q2KZ5SQuxftIt47kyd71JY4sv7rJSEGsIBgrY2NPFgdxz_EMFuDvlwxrEcb7g75ZAoKWqylCEynFOddMpL622DlgUWAxypbLQOvJTVRVcN3pflwnmHg5RCQfIGIZ_rxeNCzrjXzefa2GRFIZnywZ4WHl89Ob8BOBkpwet09WYYo6tk5B5VyD8fzu3qzDpHrIe9ndRgFtAv-_GjAvaCZCRQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+Performance+of+Sparse+Fast+Fourier+Transform+Algorithms+Using+the+Aliasing+Filter&rft.jtitle=Electronics+%28Basel%29&rft.au=Li%2C+Bin&rft.au=Jiang%2C+Zhikang&rft.au=Chen%2C+Jie&rft.date=2021-05-01&rft.issn=2079-9292&rft.eissn=2079-9292&rft.volume=10&rft.issue=9&rft.spage=1117&rft_id=info:doi/10.3390%2Felectronics10091117&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_electronics10091117 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |