Quantifying the impact of precision errors on quantum approximate optimization algorithms

The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on Q...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review research Jg. 7; H. 2; S. 023240
Hauptverfasser: Quiroz, Gregory, Titum, Paraj, Lotshaw, Phillip, Lougovski, Pavel, Schultz, Kevin, Dumitrescu, Eugene, Hen, Itay
Format: Journal Article
Sprache:Englisch
Veröffentlicht: American Physical Society 01.06.2025
ISSN:2643-1564, 2643-1564
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on QAOA performance from the perspective of both algorithmic training and performance guarantees. Leveraging cumulant expansions, we recast the faulty QAOA as a control problem in which precision errors are expressed as multiplicative control noise and derive bounds on the performance of QAOA. We show using both analytical techniques and numerical simulations that fixed precision implementations of QAOA circuits are subject to an exponential degradation in performance dependent upon the number of optimal QAOA layers and magnitude of the precision error. Despite this significant reduction, we show that it is possible to mitigate precision errors in QAOA via digitization of the variational parameters at the cost of increasing circuit depth.
ISSN:2643-1564
2643-1564
DOI:10.1103/PhysRevResearch.7.023240