Quantifying the impact of precision errors on quantum approximate optimization algorithms
The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on Q...
Saved in:
| Published in: | Physical review research Vol. 7; no. 2; p. 023240 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
American Physical Society
01.06.2025
|
| ISSN: | 2643-1564, 2643-1564 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on QAOA performance from the perspective of both algorithmic training and performance guarantees. Leveraging cumulant expansions, we recast the faulty QAOA as a control problem in which precision errors are expressed as multiplicative control noise and derive bounds on the performance of QAOA. We show using both analytical techniques and numerical simulations that fixed precision implementations of QAOA circuits are subject to an exponential degradation in performance dependent upon the number of optimal QAOA layers and magnitude of the precision error. Despite this significant reduction, we show that it is possible to mitigate precision errors in QAOA via digitization of the variational parameters at the cost of increasing circuit depth. |
|---|---|
| AbstractList | The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on QAOA performance from the perspective of both algorithmic training and performance guarantees. Leveraging cumulant expansions, we recast the faulty QAOA as a control problem in which precision errors are expressed as multiplicative control noise and derive bounds on the performance of QAOA. We show using both analytical techniques and numerical simulations that fixed precision implementations of QAOA circuits are subject to an exponential degradation in performance dependent upon the number of optimal QAOA layers and magnitude of the precision error. Despite this significant reduction, we show that it is possible to mitigate precision errors in QAOA via digitization of the variational parameters at the cost of increasing circuit depth. |
| ArticleNumber | 023240 |
| Author | Hen, Itay Titum, Paraj Lotshaw, Phillip Schultz, Kevin Quiroz, Gregory Dumitrescu, Eugene Lougovski, Pavel |
| Author_xml | – sequence: 1 givenname: Gregory orcidid: 0000-0003-4329-1445 surname: Quiroz fullname: Quiroz, Gregory – sequence: 2 givenname: Paraj orcidid: 0000-0002-7792-1532 surname: Titum fullname: Titum, Paraj – sequence: 3 givenname: Phillip orcidid: 0000-0002-7594-2735 surname: Lotshaw fullname: Lotshaw, Phillip – sequence: 4 givenname: Pavel orcidid: 0000-0002-9229-1444 surname: Lougovski fullname: Lougovski, Pavel – sequence: 5 givenname: Kevin orcidid: 0000-0002-2664-6227 surname: Schultz fullname: Schultz, Kevin – sequence: 6 givenname: Eugene orcidid: 0000-0001-5851-9567 surname: Dumitrescu fullname: Dumitrescu, Eugene – sequence: 7 givenname: Itay orcidid: 0000-0002-7009-7739 surname: Hen fullname: Hen, Itay |
| BookMark | eNpdkNtKAzEURYNUsGr_IT_QmutM-ijFS6HgBX3wKZzJpU3pTMYkivXrba2I-HQ2h81is07RoIudQwhTMqGU8Iv71TY_uvdHlx0ks5rUE8I4E-QIDVkl-JjKSgz-5BM0ynlNCGGSUqHkEL08vEFXgt-GbonLyuHQ9mAKjh73yZmQQ-ywSymmjHfpdd9-azH0fYofoYXicOxLaMMnlH0VNsuYQlm1-Rwde9hkN_q5Z-j5-uppdjte3N3MZ5eLseGMlXHVSOolV9OaKA-NnTaqIQDMKApScs5d45SwpHa8sYLZygMRxtZ2ygBkU_EzND9wbYS17tNuVNrqCEF_P2JaakglmI3TytbcEK8445UgQk4JeE8cOG4rUUm2Y6kDy6SYc3L-l0eJ3hvX_4zrWh-M8y_gtH1E |
| Cites_doi | 10.1103/PhysRevLett.131.210802 10.1063/1.1931191 10.1103/PhysRevApplied.14.034010 10.1038/s41467-021-27045-6 10.1103/PhysRevResearch.2.033446 10.1103/PhysRevX.7.021027 10.1126/sciadv.aaw9918 10.1063/1.5089550 10.1038/s41534-019-0210-7 10.1007/s11128-021-03342-3 10.1103/PhysRevA.95.062317 10.1103/PhysRevA.82.012301 10.1103/PhysRevA.107.042426 10.1088/0256-307X/38/3/030302 10.22331/q-2021-06-01-464 10.1038/nature17658 10.1103/PhysRevA.94.022309 10.1109/9.119632 10.1038/nature23879 10.1103/PhysRevResearch.3.023010 10.1103/PhysRevA.84.012305 10.21468/SciPostPhys.6.3.029 10.1088/0305-4470/15/10/028 10.1143/JPSJ.17.1100 10.1038/ncomms3067 10.1109/TASC.2014.2318294 10.1109/JMW.2020.3034071 10.1103/PhysRevA.97.022304 10.1103/PhysRevX.10.021067 10.1103/PhysRevLett.116.150503 10.1088/2633-1357/abb0d7 10.1038/s41567-020-01105-y 10.3389/fphy.2014.00005 10.1088/2058-9565/ab8c2b 10.1103/PhysRevA.78.012308 10.1088/1367-2630/18/2/023023 10.1103/PhysRevA.98.032315 10.1103/PhysRevX.6.031007 10.1103/PhysRevB.110.241402 10.1140/epjqt/s40507-021-00100-3 10.1140/epjqt/s40507-015-0022-4 10.1073/pnas.2006373117 10.1103/PhysRevA.105.062439 10.1103/PhysRevA.109.042426 10.1038/s41534-020-0259-3 10.3390/a12020034 10.22331/q-2022-01-27-635 10.1103/PhysRevA.78.012355 10.1038/s41467-017-02298-2 10.1016/j.parco.2016.11.002 10.1016/j.ifacol.2020.12.130 10.1103/PhysRevX.11.011020 10.1109/JLT.2023.3311806 10.1088/2058-9565/ab13ea 10.22331/q-2022-07-07-759 10.1103/PhysRevLett.113.250501 10.1103/PhysRevB.82.024511 10.1103/PhysRevLett.125.260505 10.1103/PhysRevA.95.022121 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.1103/PhysRevResearch.7.023240 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 2643-1564 |
| ExternalDocumentID | oai_doaj_org_article_8d73c0f83236404590aff0eae3d64652 10_1103_PhysRevResearch_7_023240 |
| GroupedDBID | 3MX AAFWJ AAYXX AECSF AFGMR AFPKN AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
| ID | FETCH-LOGICAL-c322t-6b51f5389708fabd9b8b0aa2c81a55333ebe84d07e3bd42d6fa04cd7d92aa5b63 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001507312900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2643-1564 |
| IngestDate | Fri Oct 03 12:51:59 EDT 2025 Sat Nov 29 07:43:08 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-6b51f5389708fabd9b8b0aa2c81a55333ebe84d07e3bd42d6fa04cd7d92aa5b63 |
| ORCID | 0000-0002-7594-2735 0000-0003-4329-1445 0000-0002-2664-6227 0000-0002-9229-1444 0000-0001-5851-9567 0000-0002-7792-1532 0000-0002-7009-7739 |
| OpenAccessLink | https://doaj.org/article/8d73c0f83236404590aff0eae3d64652 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8d73c0f83236404590aff0eae3d64652 crossref_primary_10_1103_PhysRevResearch_7_023240 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Physical review research |
| PublicationYear | 2025 |
| Publisher | American Physical Society |
| Publisher_xml | – name: American Physical Society |
| References | PhysRevResearch.7.023240Cc31R1 PhysRevResearch.7.023240Cc52R1 PhysRevResearch.7.023240Cc77R1 PhysRevResearch.7.023240Cc50R1 PhysRevResearch.7.023240Cc10R1 PhysRevResearch.7.023240Cc35R1 PhysRevResearch.7.023240Cc56R1 PhysRevResearch.7.023240Cc73R1 PhysRevResearch.7.023240Cc12R1 PhysRevResearch.7.023240Cc33R1 PhysRevResearch.7.023240Cc54R1 PhysRevResearch.7.023240Cc75R1 PhysRevResearch.7.023240Cc14R1 PhysRevResearch.7.023240Cc39R1 PhysRevResearch.7.023240Cc16R1 PhysRevResearch.7.023240Cc37R1 P. Gokhale (PhysRevResearch.7.023240Cc72R1) 2019 PhysRevResearch.7.023240Cc18R1 PhysRevResearch.7.023240Cc3R1 E. Pelofske (PhysRevResearch.7.023240Cc29R1) 2019 PhysRevResearch.7.023240Cc5R1 PhysRevResearch.7.023240Cc71R1 PhysRevResearch.7.023240Cc42R1 PhysRevResearch.7.023240Cc63R1 PhysRevResearch.7.023240Cc40R1 PhysRevResearch.7.023240Cc21R1 PhysRevResearch.7.023240Cc46R1 PhysRevResearch.7.023240Cc23R1 PhysRevResearch.7.023240Cc65R1 PhysRevResearch.7.023240Cc25R1 PhysRevResearch.7.023240Cc27R1 PhysRevResearch.7.023240Cc48R1 PhysRevResearch.7.023240Cc69R1 PhysRevResearch.7.023240Cc30R1 PhysRevResearch.7.023240Cc53R1 PhysRevResearch.7.023240Cc76R1 PhysRevResearch.7.023240Cc51R1 PhysRevResearch.7.023240Cc11R1 PhysRevResearch.7.023240Cc34R1 PhysRevResearch.7.023240Cc13R1 PhysRevResearch.7.023240Cc32R1 PhysRevResearch.7.023240Cc74R1 PhysRevResearch.7.023240Cc38R1 PhysRevResearch.7.023240Cc17R1 PhysRevResearch.7.023240Cc59R1 PhysRevResearch.7.023240Cc19R1 PhysRevResearch.7.023240Cc4R1 PhysRevResearch.7.023240Cc6R1 PhysRevResearch.7.023240Cc70R1 PhysRevResearch.7.023240Cc41R1 PhysRevResearch.7.023240Cc64R1 PhysRevResearch.7.023240Cc20R1 PhysRevResearch.7.023240Cc62R1 PhysRevResearch.7.023240Cc22R1 PhysRevResearch.7.023240Cc45R1 PhysRevResearch.7.023240Cc43R1 PhysRevResearch.7.023240Cc66R1 PhysRevResearch.7.023240Cc9R1 PhysRevResearch.7.023240Cc26R1 PhysRevResearch.7.023240Cc49R1 PhysRevResearch.7.023240Cc47R1 P. W. Shor (PhysRevResearch.7.023240Cc36R1) 1996 PhysRevResearch.7.023240Cc60R1 |
| References_xml | – ident: PhysRevResearch.7.023240Cc42R1 doi: 10.1103/PhysRevLett.131.210802 – ident: PhysRevResearch.7.023240Cc77R1 doi: 10.1063/1.1931191 – ident: PhysRevResearch.7.023240Cc13R1 doi: 10.1103/PhysRevApplied.14.034010 – ident: PhysRevResearch.7.023240Cc17R1 doi: 10.1038/s41467-021-27045-6 – ident: PhysRevResearch.7.023240Cc47R1 doi: 10.1103/PhysRevResearch.2.033446 – ident: PhysRevResearch.7.023240Cc33R1 doi: 10.1103/PhysRevX.7.021027 – ident: PhysRevResearch.7.023240Cc45R1 doi: 10.1126/sciadv.aaw9918 – volume-title: IEEE Proceedings of 37th Conference on Foundations of Computer Science year: 1996 ident: PhysRevResearch.7.023240Cc36R1 – ident: PhysRevResearch.7.023240Cc30R1 doi: 10.1063/1.5089550 – ident: PhysRevResearch.7.023240Cc26R1 doi: 10.1038/s41534-019-0210-7 – ident: PhysRevResearch.7.023240Cc62R1 doi: 10.1007/s11128-021-03342-3 – ident: PhysRevResearch.7.023240Cc5R1 doi: 10.1103/PhysRevA.95.062317 – ident: PhysRevResearch.7.023240Cc52R1 doi: 10.1103/PhysRevA.82.012301 – ident: PhysRevResearch.7.023240Cc19R1 doi: 10.1103/PhysRevA.107.042426 – ident: PhysRevResearch.7.023240Cc18R1 doi: 10.1088/0256-307X/38/3/030302 – ident: PhysRevResearch.7.023240Cc20R1 doi: 10.22331/q-2021-06-01-464 – ident: PhysRevResearch.7.023240Cc76R1 – ident: PhysRevResearch.7.023240Cc73R1 doi: 10.1038/nature17658 – ident: PhysRevResearch.7.023240Cc3R1 doi: 10.1103/PhysRevA.94.022309 – ident: PhysRevResearch.7.023240Cc54R1 doi: 10.1109/9.119632 – ident: PhysRevResearch.7.023240Cc11R1 doi: 10.1038/nature23879 – ident: PhysRevResearch.7.023240Cc69R1 doi: 10.1103/PhysRevResearch.3.023010 – volume-title: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture year: 2019 ident: PhysRevResearch.7.023240Cc72R1 – ident: PhysRevResearch.7.023240Cc53R1 doi: 10.1103/PhysRevA.84.012305 – ident: PhysRevResearch.7.023240Cc43R1 doi: 10.21468/SciPostPhys.6.3.029 – ident: PhysRevResearch.7.023240Cc59R1 doi: 10.1088/0305-4470/15/10/028 – ident: PhysRevResearch.7.023240Cc49R1 doi: 10.1143/JPSJ.17.1100 – ident: PhysRevResearch.7.023240Cc25R1 doi: 10.1038/ncomms3067 – ident: PhysRevResearch.7.023240Cc23R1 doi: 10.1109/TASC.2014.2318294 – ident: PhysRevResearch.7.023240Cc31R1 doi: 10.1109/JMW.2020.3034071 – ident: PhysRevResearch.7.023240Cc6R1 doi: 10.1103/PhysRevA.97.022304 – volume-title: 2019 IEEE International Conference on Rebooting Computing (ICRC) year: 2019 ident: PhysRevResearch.7.023240Cc29R1 – ident: PhysRevResearch.7.023240Cc34R1 doi: 10.1103/PhysRevX.10.021067 – ident: PhysRevResearch.7.023240Cc41R1 doi: 10.1103/PhysRevLett.116.150503 – ident: PhysRevResearch.7.023240Cc16R1 doi: 10.1088/2633-1357/abb0d7 – ident: PhysRevResearch.7.023240Cc14R1 doi: 10.1038/s41567-020-01105-y – ident: PhysRevResearch.7.023240Cc60R1 doi: 10.3389/fphy.2014.00005 – ident: PhysRevResearch.7.023240Cc46R1 doi: 10.1088/2058-9565/ab8c2b – ident: PhysRevResearch.7.023240Cc50R1 doi: 10.1103/PhysRevA.78.012308 – ident: PhysRevResearch.7.023240Cc63R1 doi: 10.1088/1367-2630/18/2/023023 – ident: PhysRevResearch.7.023240Cc39R1 doi: 10.1103/PhysRevA.98.032315 – ident: PhysRevResearch.7.023240Cc64R1 doi: 10.1103/PhysRevX.6.031007 – ident: PhysRevResearch.7.023240Cc71R1 doi: 10.1103/PhysRevB.110.241402 – ident: PhysRevResearch.7.023240Cc65R1 doi: 10.1140/epjqt/s40507-021-00100-3 – ident: PhysRevResearch.7.023240Cc48R1 doi: 10.1140/epjqt/s40507-015-0022-4 – ident: PhysRevResearch.7.023240Cc12R1 doi: 10.1073/pnas.2006373117 – ident: PhysRevResearch.7.023240Cc70R1 doi: 10.1103/PhysRevA.105.062439 – ident: PhysRevResearch.7.023240Cc75R1 doi: 10.1103/PhysRevA.109.042426 – ident: PhysRevResearch.7.023240Cc74R1 doi: 10.1038/s41534-020-0259-3 – ident: PhysRevResearch.7.023240Cc9R1 doi: 10.3390/a12020034 – ident: PhysRevResearch.7.023240Cc35R1 doi: 10.22331/q-2022-01-27-635 – ident: PhysRevResearch.7.023240Cc51R1 doi: 10.1103/PhysRevA.78.012355 – ident: PhysRevResearch.7.023240Cc40R1 doi: 10.1038/s41467-017-02298-2 – ident: PhysRevResearch.7.023240Cc4R1 doi: 10.1016/j.parco.2016.11.002 – ident: PhysRevResearch.7.023240Cc21R1 doi: 10.1016/j.ifacol.2020.12.130 – ident: PhysRevResearch.7.023240Cc56R1 doi: 10.1103/PhysRevX.11.011020 – ident: PhysRevResearch.7.023240Cc32R1 doi: 10.1109/JLT.2023.3311806 – ident: PhysRevResearch.7.023240Cc27R1 doi: 10.1088/2058-9565/ab13ea – ident: PhysRevResearch.7.023240Cc10R1 doi: 10.22331/q-2022-07-07-759 – ident: PhysRevResearch.7.023240Cc37R1 doi: 10.1103/PhysRevLett.113.250501 – ident: PhysRevResearch.7.023240Cc22R1 doi: 10.1103/PhysRevB.82.024511 – ident: PhysRevResearch.7.023240Cc66R1 doi: 10.1103/PhysRevLett.125.260505 – ident: PhysRevResearch.7.023240Cc38R1 doi: 10.1103/PhysRevA.95.022121 |
| SSID | ssj0002511485 |
| Score | 2.3002234 |
| Snippet | The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 023240 |
| Title | Quantifying the impact of precision errors on quantum approximate optimization algorithms |
| URI | https://doaj.org/article/8d73c0f83236404590aff0eae3d64652 |
| Volume | 7 |
| WOSCitedRecordID | wos001507312900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2643-1564 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002511485 issn: 2643-1564 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqFZW4VEBB3RYqH7im68SOHR8BbdUDrWhV0HKKxl-wUnfTJrsrTvz2jp0sWnrhwiWKIsuy3jjjN9abGULeh5B7JBYs08rpTNiCZ5pJyIyDQoO2PKSs92-f1dVVNZvpLzutvqImrC8P3AM3qZzilgXceFwK5B-aQQjMg-dOClkm74usZyeYij44EmdRlVvpDuOTKKi88Zutnu1MnbFIJthf59FO2f50vpy_IAcDMaQf-gW9JHt--YrsJ4Gm7Q7J9-s1RF1PzEqiSNpon95Im0Dv26FPDvVt27QdxbeHOHq9oKlk-K850lJPG_QOiyHtksLdj6adr34uutfk6_n09tNFNrRFyCz-fatMmjIP6Ke0YlUA47SpDAMobJVDieyNo10q4Zjy3DhROBmACevQFgVAaSR_Q0bLZumPCFVc5lKWBhAIARLnwwijdAaED8qwYkzyLTj1fV_9ok5RA-P1E0BrVfeAjsnHiOKf8bF-dfqAVq0Hq9b_surx_5jkhDwvYrfedGfyloxW7dq_I8_sZjXv2tO0YfB5-Xv6CO4yybM |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+impact+of+precision+errors+on+quantum+approximate+optimization+algorithms&rft.jtitle=Physical+review+research&rft.au=Gregory+Quiroz&rft.au=Paraj+Titum&rft.au=Phillip+Lotshaw&rft.au=Pavel+Lougovski&rft.date=2025-06-01&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=7&rft.issue=2&rft.spage=023240&rft_id=info:doi/10.1103%2FPhysRevResearch.7.023240&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8d73c0f83236404590aff0eae3d64652 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |