Quantifying the impact of precision errors on quantum approximate optimization algorithms

The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on Q...

Full description

Saved in:
Bibliographic Details
Published in:Physical review research Vol. 7; no. 2; p. 023240
Main Authors: Quiroz, Gregory, Titum, Paraj, Lotshaw, Phillip, Lougovski, Pavel, Schultz, Kevin, Dumitrescu, Eugene, Hen, Itay
Format: Journal Article
Language:English
Published: American Physical Society 01.06.2025
ISSN:2643-1564, 2643-1564
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on QAOA performance from the perspective of both algorithmic training and performance guarantees. Leveraging cumulant expansions, we recast the faulty QAOA as a control problem in which precision errors are expressed as multiplicative control noise and derive bounds on the performance of QAOA. We show using both analytical techniques and numerical simulations that fixed precision implementations of QAOA circuits are subject to an exponential degradation in performance dependent upon the number of optimal QAOA layers and magnitude of the precision error. Despite this significant reduction, we show that it is possible to mitigate precision errors in QAOA via digitization of the variational parameters at the cost of increasing circuit depth.
AbstractList The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization problems by iteratively alternating between intervals of controlled quantum evolution. Here, we examine the effect of analog precision errors on QAOA performance from the perspective of both algorithmic training and performance guarantees. Leveraging cumulant expansions, we recast the faulty QAOA as a control problem in which precision errors are expressed as multiplicative control noise and derive bounds on the performance of QAOA. We show using both analytical techniques and numerical simulations that fixed precision implementations of QAOA circuits are subject to an exponential degradation in performance dependent upon the number of optimal QAOA layers and magnitude of the precision error. Despite this significant reduction, we show that it is possible to mitigate precision errors in QAOA via digitization of the variational parameters at the cost of increasing circuit depth.
ArticleNumber 023240
Author Hen, Itay
Titum, Paraj
Lotshaw, Phillip
Schultz, Kevin
Quiroz, Gregory
Dumitrescu, Eugene
Lougovski, Pavel
Author_xml – sequence: 1
  givenname: Gregory
  orcidid: 0000-0003-4329-1445
  surname: Quiroz
  fullname: Quiroz, Gregory
– sequence: 2
  givenname: Paraj
  orcidid: 0000-0002-7792-1532
  surname: Titum
  fullname: Titum, Paraj
– sequence: 3
  givenname: Phillip
  orcidid: 0000-0002-7594-2735
  surname: Lotshaw
  fullname: Lotshaw, Phillip
– sequence: 4
  givenname: Pavel
  orcidid: 0000-0002-9229-1444
  surname: Lougovski
  fullname: Lougovski, Pavel
– sequence: 5
  givenname: Kevin
  orcidid: 0000-0002-2664-6227
  surname: Schultz
  fullname: Schultz, Kevin
– sequence: 6
  givenname: Eugene
  orcidid: 0000-0001-5851-9567
  surname: Dumitrescu
  fullname: Dumitrescu, Eugene
– sequence: 7
  givenname: Itay
  orcidid: 0000-0002-7009-7739
  surname: Hen
  fullname: Hen, Itay
BookMark eNpdkNtKAzEURYNUsGr_IT_QmutM-ijFS6HgBX3wKZzJpU3pTMYkivXrba2I-HQ2h81is07RoIudQwhTMqGU8Iv71TY_uvdHlx0ks5rUE8I4E-QIDVkl-JjKSgz-5BM0ynlNCGGSUqHkEL08vEFXgt-GbonLyuHQ9mAKjh73yZmQQ-ywSymmjHfpdd9-azH0fYofoYXicOxLaMMnlH0VNsuYQlm1-Rwde9hkN_q5Z-j5-uppdjte3N3MZ5eLseGMlXHVSOolV9OaKA-NnTaqIQDMKApScs5d45SwpHa8sYLZygMRxtZ2ygBkU_EzND9wbYS17tNuVNrqCEF_P2JaakglmI3TytbcEK8445UgQk4JeE8cOG4rUUm2Y6kDy6SYc3L-l0eJ3hvX_4zrWh-M8y_gtH1E
Cites_doi 10.1103/PhysRevLett.131.210802
10.1063/1.1931191
10.1103/PhysRevApplied.14.034010
10.1038/s41467-021-27045-6
10.1103/PhysRevResearch.2.033446
10.1103/PhysRevX.7.021027
10.1126/sciadv.aaw9918
10.1063/1.5089550
10.1038/s41534-019-0210-7
10.1007/s11128-021-03342-3
10.1103/PhysRevA.95.062317
10.1103/PhysRevA.82.012301
10.1103/PhysRevA.107.042426
10.1088/0256-307X/38/3/030302
10.22331/q-2021-06-01-464
10.1038/nature17658
10.1103/PhysRevA.94.022309
10.1109/9.119632
10.1038/nature23879
10.1103/PhysRevResearch.3.023010
10.1103/PhysRevA.84.012305
10.21468/SciPostPhys.6.3.029
10.1088/0305-4470/15/10/028
10.1143/JPSJ.17.1100
10.1038/ncomms3067
10.1109/TASC.2014.2318294
10.1109/JMW.2020.3034071
10.1103/PhysRevA.97.022304
10.1103/PhysRevX.10.021067
10.1103/PhysRevLett.116.150503
10.1088/2633-1357/abb0d7
10.1038/s41567-020-01105-y
10.3389/fphy.2014.00005
10.1088/2058-9565/ab8c2b
10.1103/PhysRevA.78.012308
10.1088/1367-2630/18/2/023023
10.1103/PhysRevA.98.032315
10.1103/PhysRevX.6.031007
10.1103/PhysRevB.110.241402
10.1140/epjqt/s40507-021-00100-3
10.1140/epjqt/s40507-015-0022-4
10.1073/pnas.2006373117
10.1103/PhysRevA.105.062439
10.1103/PhysRevA.109.042426
10.1038/s41534-020-0259-3
10.3390/a12020034
10.22331/q-2022-01-27-635
10.1103/PhysRevA.78.012355
10.1038/s41467-017-02298-2
10.1016/j.parco.2016.11.002
10.1016/j.ifacol.2020.12.130
10.1103/PhysRevX.11.011020
10.1109/JLT.2023.3311806
10.1088/2058-9565/ab13ea
10.22331/q-2022-07-07-759
10.1103/PhysRevLett.113.250501
10.1103/PhysRevB.82.024511
10.1103/PhysRevLett.125.260505
10.1103/PhysRevA.95.022121
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.7.023240
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_8d73c0f83236404590aff0eae3d64652
10_1103_PhysRevResearch_7_023240
GroupedDBID 3MX
AAFWJ
AAYXX
AECSF
AFGMR
AFPKN
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c322t-6b51f5389708fabd9b8b0aa2c81a55333ebe84d07e3bd42d6fa04cd7d92aa5b63
IEDL.DBID DOA
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001507312900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2643-1564
IngestDate Fri Oct 03 12:51:59 EDT 2025
Sat Nov 29 07:43:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-6b51f5389708fabd9b8b0aa2c81a55333ebe84d07e3bd42d6fa04cd7d92aa5b63
ORCID 0000-0002-7594-2735
0000-0003-4329-1445
0000-0002-2664-6227
0000-0002-9229-1444
0000-0001-5851-9567
0000-0002-7792-1532
0000-0002-7009-7739
OpenAccessLink https://doaj.org/article/8d73c0f83236404590aff0eae3d64652
ParticipantIDs doaj_primary_oai_doaj_org_article_8d73c0f83236404590aff0eae3d64652
crossref_primary_10_1103_PhysRevResearch_7_023240
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2025
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.7.023240Cc31R1
PhysRevResearch.7.023240Cc52R1
PhysRevResearch.7.023240Cc77R1
PhysRevResearch.7.023240Cc50R1
PhysRevResearch.7.023240Cc10R1
PhysRevResearch.7.023240Cc35R1
PhysRevResearch.7.023240Cc56R1
PhysRevResearch.7.023240Cc73R1
PhysRevResearch.7.023240Cc12R1
PhysRevResearch.7.023240Cc33R1
PhysRevResearch.7.023240Cc54R1
PhysRevResearch.7.023240Cc75R1
PhysRevResearch.7.023240Cc14R1
PhysRevResearch.7.023240Cc39R1
PhysRevResearch.7.023240Cc16R1
PhysRevResearch.7.023240Cc37R1
P. Gokhale (PhysRevResearch.7.023240Cc72R1) 2019
PhysRevResearch.7.023240Cc18R1
PhysRevResearch.7.023240Cc3R1
E. Pelofske (PhysRevResearch.7.023240Cc29R1) 2019
PhysRevResearch.7.023240Cc5R1
PhysRevResearch.7.023240Cc71R1
PhysRevResearch.7.023240Cc42R1
PhysRevResearch.7.023240Cc63R1
PhysRevResearch.7.023240Cc40R1
PhysRevResearch.7.023240Cc21R1
PhysRevResearch.7.023240Cc46R1
PhysRevResearch.7.023240Cc23R1
PhysRevResearch.7.023240Cc65R1
PhysRevResearch.7.023240Cc25R1
PhysRevResearch.7.023240Cc27R1
PhysRevResearch.7.023240Cc48R1
PhysRevResearch.7.023240Cc69R1
PhysRevResearch.7.023240Cc30R1
PhysRevResearch.7.023240Cc53R1
PhysRevResearch.7.023240Cc76R1
PhysRevResearch.7.023240Cc51R1
PhysRevResearch.7.023240Cc11R1
PhysRevResearch.7.023240Cc34R1
PhysRevResearch.7.023240Cc13R1
PhysRevResearch.7.023240Cc32R1
PhysRevResearch.7.023240Cc74R1
PhysRevResearch.7.023240Cc38R1
PhysRevResearch.7.023240Cc17R1
PhysRevResearch.7.023240Cc59R1
PhysRevResearch.7.023240Cc19R1
PhysRevResearch.7.023240Cc4R1
PhysRevResearch.7.023240Cc6R1
PhysRevResearch.7.023240Cc70R1
PhysRevResearch.7.023240Cc41R1
PhysRevResearch.7.023240Cc64R1
PhysRevResearch.7.023240Cc20R1
PhysRevResearch.7.023240Cc62R1
PhysRevResearch.7.023240Cc22R1
PhysRevResearch.7.023240Cc45R1
PhysRevResearch.7.023240Cc43R1
PhysRevResearch.7.023240Cc66R1
PhysRevResearch.7.023240Cc9R1
PhysRevResearch.7.023240Cc26R1
PhysRevResearch.7.023240Cc49R1
PhysRevResearch.7.023240Cc47R1
P. W. Shor (PhysRevResearch.7.023240Cc36R1) 1996
PhysRevResearch.7.023240Cc60R1
References_xml – ident: PhysRevResearch.7.023240Cc42R1
  doi: 10.1103/PhysRevLett.131.210802
– ident: PhysRevResearch.7.023240Cc77R1
  doi: 10.1063/1.1931191
– ident: PhysRevResearch.7.023240Cc13R1
  doi: 10.1103/PhysRevApplied.14.034010
– ident: PhysRevResearch.7.023240Cc17R1
  doi: 10.1038/s41467-021-27045-6
– ident: PhysRevResearch.7.023240Cc47R1
  doi: 10.1103/PhysRevResearch.2.033446
– ident: PhysRevResearch.7.023240Cc33R1
  doi: 10.1103/PhysRevX.7.021027
– ident: PhysRevResearch.7.023240Cc45R1
  doi: 10.1126/sciadv.aaw9918
– volume-title: IEEE Proceedings of 37th Conference on Foundations of Computer Science
  year: 1996
  ident: PhysRevResearch.7.023240Cc36R1
– ident: PhysRevResearch.7.023240Cc30R1
  doi: 10.1063/1.5089550
– ident: PhysRevResearch.7.023240Cc26R1
  doi: 10.1038/s41534-019-0210-7
– ident: PhysRevResearch.7.023240Cc62R1
  doi: 10.1007/s11128-021-03342-3
– ident: PhysRevResearch.7.023240Cc5R1
  doi: 10.1103/PhysRevA.95.062317
– ident: PhysRevResearch.7.023240Cc52R1
  doi: 10.1103/PhysRevA.82.012301
– ident: PhysRevResearch.7.023240Cc19R1
  doi: 10.1103/PhysRevA.107.042426
– ident: PhysRevResearch.7.023240Cc18R1
  doi: 10.1088/0256-307X/38/3/030302
– ident: PhysRevResearch.7.023240Cc20R1
  doi: 10.22331/q-2021-06-01-464
– ident: PhysRevResearch.7.023240Cc76R1
– ident: PhysRevResearch.7.023240Cc73R1
  doi: 10.1038/nature17658
– ident: PhysRevResearch.7.023240Cc3R1
  doi: 10.1103/PhysRevA.94.022309
– ident: PhysRevResearch.7.023240Cc54R1
  doi: 10.1109/9.119632
– ident: PhysRevResearch.7.023240Cc11R1
  doi: 10.1038/nature23879
– ident: PhysRevResearch.7.023240Cc69R1
  doi: 10.1103/PhysRevResearch.3.023010
– volume-title: Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture
  year: 2019
  ident: PhysRevResearch.7.023240Cc72R1
– ident: PhysRevResearch.7.023240Cc53R1
  doi: 10.1103/PhysRevA.84.012305
– ident: PhysRevResearch.7.023240Cc43R1
  doi: 10.21468/SciPostPhys.6.3.029
– ident: PhysRevResearch.7.023240Cc59R1
  doi: 10.1088/0305-4470/15/10/028
– ident: PhysRevResearch.7.023240Cc49R1
  doi: 10.1143/JPSJ.17.1100
– ident: PhysRevResearch.7.023240Cc25R1
  doi: 10.1038/ncomms3067
– ident: PhysRevResearch.7.023240Cc23R1
  doi: 10.1109/TASC.2014.2318294
– ident: PhysRevResearch.7.023240Cc31R1
  doi: 10.1109/JMW.2020.3034071
– ident: PhysRevResearch.7.023240Cc6R1
  doi: 10.1103/PhysRevA.97.022304
– volume-title: 2019 IEEE International Conference on Rebooting Computing (ICRC)
  year: 2019
  ident: PhysRevResearch.7.023240Cc29R1
– ident: PhysRevResearch.7.023240Cc34R1
  doi: 10.1103/PhysRevX.10.021067
– ident: PhysRevResearch.7.023240Cc41R1
  doi: 10.1103/PhysRevLett.116.150503
– ident: PhysRevResearch.7.023240Cc16R1
  doi: 10.1088/2633-1357/abb0d7
– ident: PhysRevResearch.7.023240Cc14R1
  doi: 10.1038/s41567-020-01105-y
– ident: PhysRevResearch.7.023240Cc60R1
  doi: 10.3389/fphy.2014.00005
– ident: PhysRevResearch.7.023240Cc46R1
  doi: 10.1088/2058-9565/ab8c2b
– ident: PhysRevResearch.7.023240Cc50R1
  doi: 10.1103/PhysRevA.78.012308
– ident: PhysRevResearch.7.023240Cc63R1
  doi: 10.1088/1367-2630/18/2/023023
– ident: PhysRevResearch.7.023240Cc39R1
  doi: 10.1103/PhysRevA.98.032315
– ident: PhysRevResearch.7.023240Cc64R1
  doi: 10.1103/PhysRevX.6.031007
– ident: PhysRevResearch.7.023240Cc71R1
  doi: 10.1103/PhysRevB.110.241402
– ident: PhysRevResearch.7.023240Cc65R1
  doi: 10.1140/epjqt/s40507-021-00100-3
– ident: PhysRevResearch.7.023240Cc48R1
  doi: 10.1140/epjqt/s40507-015-0022-4
– ident: PhysRevResearch.7.023240Cc12R1
  doi: 10.1073/pnas.2006373117
– ident: PhysRevResearch.7.023240Cc70R1
  doi: 10.1103/PhysRevA.105.062439
– ident: PhysRevResearch.7.023240Cc75R1
  doi: 10.1103/PhysRevA.109.042426
– ident: PhysRevResearch.7.023240Cc74R1
  doi: 10.1038/s41534-020-0259-3
– ident: PhysRevResearch.7.023240Cc9R1
  doi: 10.3390/a12020034
– ident: PhysRevResearch.7.023240Cc35R1
  doi: 10.22331/q-2022-01-27-635
– ident: PhysRevResearch.7.023240Cc51R1
  doi: 10.1103/PhysRevA.78.012355
– ident: PhysRevResearch.7.023240Cc40R1
  doi: 10.1038/s41467-017-02298-2
– ident: PhysRevResearch.7.023240Cc4R1
  doi: 10.1016/j.parco.2016.11.002
– ident: PhysRevResearch.7.023240Cc21R1
  doi: 10.1016/j.ifacol.2020.12.130
– ident: PhysRevResearch.7.023240Cc56R1
  doi: 10.1103/PhysRevX.11.011020
– ident: PhysRevResearch.7.023240Cc32R1
  doi: 10.1109/JLT.2023.3311806
– ident: PhysRevResearch.7.023240Cc27R1
  doi: 10.1088/2058-9565/ab13ea
– ident: PhysRevResearch.7.023240Cc10R1
  doi: 10.22331/q-2022-07-07-759
– ident: PhysRevResearch.7.023240Cc37R1
  doi: 10.1103/PhysRevLett.113.250501
– ident: PhysRevResearch.7.023240Cc22R1
  doi: 10.1103/PhysRevB.82.024511
– ident: PhysRevResearch.7.023240Cc66R1
  doi: 10.1103/PhysRevLett.125.260505
– ident: PhysRevResearch.7.023240Cc38R1
  doi: 10.1103/PhysRevA.95.022121
SSID ssj0002511485
Score 2.3002234
Snippet The quantum approximate optimization algorithm (QAOA) is a hybrid quantum-classical algorithm that seeks to achieve approximate solutions to optimization...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 023240
Title Quantifying the impact of precision errors on quantum approximate optimization algorithms
URI https://doaj.org/article/8d73c0f83236404590aff0eae3d64652
Volume 7
WOSCitedRecordID wos001507312900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2643-1564
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002511485
  issn: 2643-1564
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWqFZW4VEBB3RYqH7im68SOHR8BbdUDrWhV0HKKxl-wUnfTJrsrTvz2jp0sWnrhwiWKIsuy3jjjN9abGULeh5B7JBYs08rpTNiCZ5pJyIyDQoO2PKSs92-f1dVVNZvpLzutvqImrC8P3AM3qZzilgXceFwK5B-aQQjMg-dOClkm74usZyeYij44EmdRlVvpDuOTKKi88Zutnu1MnbFIJthf59FO2f50vpy_IAcDMaQf-gW9JHt--YrsJ4Gm7Q7J9-s1RF1PzEqiSNpon95Im0Dv26FPDvVt27QdxbeHOHq9oKlk-K850lJPG_QOiyHtksLdj6adr34uutfk6_n09tNFNrRFyCz-fatMmjIP6Ke0YlUA47SpDAMobJVDieyNo10q4Zjy3DhROBmACevQFgVAaSR_Q0bLZumPCFVc5lKWBhAIARLnwwijdAaED8qwYkzyLTj1fV_9ok5RA-P1E0BrVfeAjsnHiOKf8bF-dfqAVq0Hq9b_surx_5jkhDwvYrfedGfyloxW7dq_I8_sZjXv2tO0YfB5-Xv6CO4yybM
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantifying+the+impact+of+precision+errors+on+quantum+approximate+optimization+algorithms&rft.jtitle=Physical+review+research&rft.au=Gregory+Quiroz&rft.au=Paraj+Titum&rft.au=Phillip+Lotshaw&rft.au=Pavel+Lougovski&rft.date=2025-06-01&rft.pub=American+Physical+Society&rft.eissn=2643-1564&rft.volume=7&rft.issue=2&rft.spage=023240&rft_id=info:doi/10.1103%2FPhysRevResearch.7.023240&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8d73c0f83236404590aff0eae3d64652
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon