Visual Analytics for Machine Learning: A Data Perspective Survey

The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML,...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on visualization and computer graphics Vol. 30; no. 12; pp. 7637 - 7656
Main Authors: Wang, Junpeng, Liu, Shixia, Zhang, Wei
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2024
Subjects:
ISSN:1077-2626, 1941-0506, 1941-0506
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective . First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.
AbstractList The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective. First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective. First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.
The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding research topic, VIS4ML, keeps growing at a fast pace. To better organize the enormous works and shed light on the developing trend of VIS4ML, we provide a systematic review of these works through this survey. Since data quality greatly impacts the performance of ML models, our survey focuses specifically on summarizing VIS4ML works from the data perspective . First, we categorize the common data handled by ML models into five types, explain the unique features of each type, and highlight the corresponding ML models that are good at learning from them. Second, from the large number of VIS4ML works, we tease out six tasks that operate on these types of data (i.e., data-centric tasks) at different stages of the ML pipeline to understand, diagnose, and refine ML models. Lastly, by studying the distribution of 143 surveyed papers across the five data types, six data-centric tasks, and their intersections, we analyze the prospective research directions and envision future research trends.
Author Wang, Junpeng
Zhang, Wei
Liu, Shixia
Author_xml – sequence: 1
  givenname: Junpeng
  orcidid: 0000-0002-1130-9914
  surname: Wang
  fullname: Wang, Junpeng
  email: junpeng.wang.nk@gmail.com
  organization: Visa Research, Foster City, CA, USA
– sequence: 2
  givenname: Shixia
  orcidid: 0000-0003-4499-6420
  surname: Liu
  fullname: Liu, Shixia
  email: shixia@tsinghua.edu.cn
  organization: Tsinghua University, Beijing, China
– sequence: 3
  givenname: Wei
  orcidid: 0009-0001-7984-7241
  surname: Zhang
  fullname: Zhang, Wei
  email: wzhan@visa.com
  organization: Visa Research, Foster City, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38261496$$D View this record in MEDLINE/PubMed
BookMark eNp9kEtrGzEUhUVJqfPoDyiEMstsxtVrNFJXNU7jBBwSiOOtuKNeNQrjGUeaMfjfd4xtCF1kde7i-w7cc0ZOmrZBQr4xOmaMmh-L5XQ25pTLsRBFSVXxiZwyI1lOC6pOhpuWZc4VVyNyltIrpUxKbb6QkdBcMWnUKfm1DKmHOps0UG-74FLm25jdg3sJDWZzhNiE5u_PbJJdQwfZI8a0RteFDWZPfdzg9oJ89lAn_HrIc_J883sxvc3nD7O76WSeO8F5lyuQRSVKXykjJWhfaC8cc1CgqkBQEGZIz72XXlDmSi2kxqLSQJkxnClxTq72vevYvvWYOrsKyWFdQ4Ntnyw3TDOjdblDvx_QvlrhH7uOYQVxa49fD0C5B1xsU4rorQsddKFtugihtoza3b52t6_d7WsP-w4m-888ln_kXO6dgIjveMn48Jv4Bx-JhCQ
CODEN ITVGEA
CitedBy_id crossref_primary_10_1109_TVCG_2024_3456354
crossref_primary_10_1007_s41095_023_0393_x
crossref_primary_10_1109_TVCG_2024_3496789
crossref_primary_10_1109_ACCESS_2025_3581136
crossref_primary_10_1109_TVCG_2024_3514996
crossref_primary_10_1109_TVCG_2025_3539779
crossref_primary_10_1109_TVCG_2025_3546644
crossref_primary_10_1016_j_visinf_2025_100269
crossref_primary_10_1109_TVCG_2024_3456371
Cites_doi 10.1109/TVCG.2021.3084694
10.1109/TVCG.2020.3030471
10.1109/VISUAL.2019.8933695
10.1111/cgf.14541
10.1109/TVCG.2020.3030449
10.1109/TVCG.2021.3114858
10.1109/tvcg.2023.3345340
10.1109/TVCG.2022.3209489
10.1109/TVCG.2020.2973258
10.1109/TVCG.2022.3209484
10.1109/MCG.2018.042731661
10.1145/3587470
10.1109/TVCG.2015.2467717
10.1109/MCG.2022.3199727
10.1109/TVCG.2018.2853721
10.1109/TVCG.2019.2903946
10.1111/cgf.14195
10.1109/TVCG.2009.111
10.1109/PacificVis56936.2023.00032
10.1109/TVCG.2021.3114779
10.1111/cgf.13406
10.1109/PacificVis48177.2020.3542
10.1109/VAST47406.2019.8986943
10.1109/VAST50239.2020.00007
10.1016/j.visinf.2017.01.006
10.1109/TVCG.2023.3326934
10.1109/TVCG.2017.2744683
10.1109/TVCG.2020.3030461
10.1109/PacificVis52677.2021.00032
10.1109/TVCG.2021.3114850
10.1109/MCG.2019.2919033
10.1111/cgf.13844
10.1109/VAST.2017.8585733
10.1109/TVCG.2016.2598831
10.1109/MCG.2022.3201465
10.1109/TVCG.2018.2865043
10.1109/TVCG.2017.2744158
10.1109/VAST.2018.8802454
10.1109/TVCG.2017.2744718
10.1109/PacificVis53943.2022.00020
10.1109/TVCG.2015.2467757
10.1109/TVCG.2022.3148197
10.1109/TVCG.2017.2745085
10.1109/VIS47514.2020.00057
10.1109/TVCG.2016.2598828
10.1109/VIS49827.2021.9623271
10.1109/VAST.2017.8585720
10.1109/TVCG.2019.2934619
10.1109/TVCG.2023.3326588
10.1109/VIS47514.2020.00065
10.1111/cgf.13972
10.1109/VAST.2017.8585721
10.1109/TVCG.2020.2995100
10.1109/TVCG.2022.3209466
10.1109/TNNLS.2020.2978386
10.1109/TVCG.2022.3209435
10.1109/TVCG.2020.3011155
10.1109/TVCG.2022.3184186
10.1109/TVCG.2021.3114694
10.1111/cgf.14034
10.1109/TVCG.2019.2903943
10.1109/TVCG.2020.2969185
10.1109/TVCG.2022.3182488
10.21236/ADA273556
10.1109/PacificVis48177.2020.7127
10.1109/pacificvis48177.2020.7090
10.1109/TVCG.2021.3114855
10.1109/PacificVis53943.2022.00027
10.1111/j.1467-8659.2011.01939.x
10.1109/TVCG.2020.3030418
10.1109/TVCG.2017.2744378
10.1111/cgf.13962
10.1109/TVCG.2022.3209423
10.1111/cgf.13672
10.1109/TVCG.2021.3138933
10.1109/VAST.2018.8802509
10.1109/PacificVis.2019.00044
10.1111/cgf.13683
10.1109/PacificVis.2018.00031
10.1109/PacificVis48177.2020.2785
10.1109/TVCG.2021.3114683
10.1111/cgf.13681
10.1109/TVCG.2020.3030342
10.1109/PacificVis53943.2022.00029
10.1109/TVCG.2020.2986996
10.1109/VIS47514.2020.00062
10.1109/VIS47514.2020.00061
10.1109/TVCG.2018.2843369
10.58248/pn633
10.1111/cgf.13210
10.1109/TVCG.2019.2934262
10.1109/TVCG.2020.3012063
10.1109/TVCG.2020.3045918
10.1109/TVCG.2017.2744358
10.14711/thesis-991012730263603412
10.1109/TVCG.2020.3030384
10.1177/14738716221130338
10.1109/TVCG.2018.2816223
10.1109/TVCG.2017.2745141
10.1111/cgf.14302
10.1109/TVCG.2021.3114793
10.1109/TVCG.2021.3074010
10.1109/TVCG.2020.3030350
10.1016/j.compeleceng.2013.11.024
10.1109/TVCG.2021.3057483
10.1109/TVCG.2016.2598838
10.1109/TVCG.2018.2864477
10.1109/TVCG.2021.3114837
10.1109/TVCG.2018.2864499
10.1109/TVCG.2022.3148107
10.1109/TVCG.2022.3209384
10.1111/cgf.13453
10.1109/TVCG.2019.2934629
10.1109/VIS47514.2020.00064
10.1109/TVCG.2022.3209347
10.1109/MCG.2019.2922592
10.1109/TVCG.2014.2346660
10.1007/s11263-015-0816-y
10.1109/VIS54862.2022.00018
10.1109/TVCG.2021.3114864
10.1109/MCG.2018.2878902
10.1109/PacificVis48177.2020.1031
10.1111/cgf.14525
10.1109/MSPEC.2022.9754503
10.1109/TVCG.2018.2864500
10.1109/VIS54862.2022.00019
10.1109/TVCG.2021.3114836
10.1109/PacificVis52677.2021.00038
10.1109/TVCG.2022.3146806
10.1109/PACIFICVIS.2016.7465261
10.1109/TVCG.2019.2934631
10.1109/TVCG.2021.3114794
10.1109/TVCG.2018.2865044
10.1109/TVCG.2020.3030354
10.1145/3604433
10.1109/TVCG.2023.3261935
10.1109/TVCG.2017.2744938
10.1109/TVCG.2018.2864812
10.1109/TVCG.2022.3209479
10.1109/TVCG.2018.2865027
10.1109/TVCG.2018.2864838
10.1111/cgf.13667
10.1109/TVCG.2020.3028976
10.1111/cgf.13973
10.1109/TVCG.2020.3028888
10.1145/2702123.2702509
10.1109/vis49827.2021.9623268
10.1109/TVCG.2022.3209465
10.1023/A:1009953814988
10.1109/TVCG.2022.3141040
10.1109/TVCG.2021.3076749
10.1109/tvcg.2024.3388521/mm1
10.1111/cgf.13417
10.1109/TVCG.2018.2864475
10.1109/TVCG.2018.2865230
10.1109/5.726791
10.1109/VISUAL.2019.8933619
10.1007/s12650-018-0531-1
10.1109/VAST50239.2020.00006
10.1109/TVCG.2021.3114845
10.1109/TVCG.2021.3102051
10.1016/B978-155860915-0/50046-9
10.1109/TVCG.2022.3184247
10.1109/TVCG.2022.3165347
10.1109/TVCG.2022.3209425
10.1109/TVCG.2019.2934595
10.1109/VAST47406.2019.8986948
10.1109/TVCG.2022.3172107
10.1109/VISUAL.2019.8933744
10.1109/TVCG.2019.2921323
10.1109/TVCG.2019.2934267
10.1111/cgf.14524
10.1038/nature14539
10.1007/s10115-007-0103-5
10.1109/INFVIS.2005.1532136
10.1007/s41095-020-0191-7
10.1109/VL.1996.545307
10.1007/s41095-023-0393-x
10.1109/TVCG.2013.124
10.1109/TVCG.2022.3209462
10.1109/VISUAL.2019.8933677
10.1109/TVCG.2018.2864504
10.1109/TVCG.2019.2934659
10.1109/MSP.2012.2211477
10.1111/cgf.14418
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TVCG.2024.3357065
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0506
EndPage 7656
ExternalDocumentID 38261496
10_1109_TVCG_2024_3357065
10412199
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IEDLZ
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNI
RNS
RZB
TN5
VH1
AAYXX
CITATION
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-6a45b37fb6944a8f58f3c1ca5e6ba30a396baf2ff4f301c78348e5b8a01992163
IEDL.DBID RIE
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001346124800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1077-2626
1941-0506
IngestDate Wed Oct 01 07:04:30 EDT 2025
Mon Jul 21 05:59:29 EDT 2025
Sat Nov 29 03:31:47 EST 2025
Tue Nov 18 21:09:55 EST 2025
Wed Aug 27 03:02:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-6a45b37fb6944a8f58f3c1ca5e6ba30a396baf2ff4f301c78348e5b8a01992163
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0009-0001-7984-7241
0000-0002-1130-9914
0000-0003-4499-6420
PMID 38261496
PQID 2918198876
PQPubID 23479
PageCount 20
ParticipantIDs crossref_citationtrail_10_1109_TVCG_2024_3357065
ieee_primary_10412199
proquest_miscellaneous_2918198876
crossref_primary_10_1109_TVCG_2024_3357065
pubmed_primary_38261496
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on visualization and computer graphics
PublicationTitleAbbrev TVCG
PublicationTitleAlternate IEEE Trans Vis Comput Graph
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref56
ref59
ref58
ref55
ref54
Bodria (ref194)
Vaswani (ref52)
ref51
ref50
Kwon (ref150)
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref100
ref101
ref40
ref35
ref34
ref37
ref36
ref31
ref33
ref32
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Van der Maaten (ref83) 2008; 9
ref128
ref129
ref97
ref126
ref96
ref127
ref99
ref124
ref98
ref125
Rojo (ref180)
ref93
ref133
ref92
ref134
ref131
ref94
ref132
ref130
ref91
ref90
ref89
ref139
ref137
ref85
ref138
ref88
ref135
ref87
ref136
Karpathy (ref53) 2015
ref82
ref144
ref81
ref145
ref84
ref142
ref143
ref140
ref141
ref80
ref79
ref108
ref78
ref109
ref106
ref107
ref75
ref104
ref74
ref105
ref77
ref102
ref76
ref103
ref111
ref70
ref112
ref73
ref72
ref110
ref68
ref119
ref67
ref117
ref69
ref118
ref64
ref115
ref63
ref116
ref113
ref65
ref114
ref122
Morris (ref71) 2020
ref123
ref62
ref120
ref61
ref121
Tominski (ref86) 2006
Zha (ref95) 2023
Dosovitskiy (ref66) 2020
ref168
ref169
Krizhevsky (ref60) 2009
ref170
ref177
ref178
ref175
ref176
ref173
ref174
ref171
ref172
ref179
ref181
ref188
ref189
ref186
ref187
ref184
ref185
ref182
ref183
ref148
ref149
ref146
ref147
ref155
ref156
ref153
ref154
ref151
ref152
ref159
ref157
ref158
ref166
ref167
ref164
ref165
ref162
ref163
ref160
ref161
ref13
ref12
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Goodfellow (ref2) 2016
ref1
ref191
ref192
ref190
ref197
ref198
ref195
ref196
ref193
Wang (ref30) 2019
References_xml – ident: ref186
  doi: 10.1109/TVCG.2021.3084694
– ident: ref174
  doi: 10.1109/TVCG.2020.3030471
– ident: ref44
  doi: 10.1109/VISUAL.2019.8933695
– ident: ref149
  doi: 10.1111/cgf.14541
– ident: ref107
  doi: 10.1109/TVCG.2020.3030449
– ident: ref136
  doi: 10.1109/TVCG.2021.3114858
– ident: ref111
  doi: 10.1109/tvcg.2023.3345340
– ident: ref189
  doi: 10.1109/TVCG.2022.3209489
– ident: ref18
  doi: 10.1109/TVCG.2020.2973258
– start-page: 5998
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref52
  article-title: Attention is all you need
– year: 2006
  ident: ref86
  article-title: Event based visualization for user centered visual analysis.
– ident: ref188
  doi: 10.1109/TVCG.2022.3209484
– year: 2019
  ident: ref30
  article-title: Interpreting and diagnosing deep learning models: A visual analytics approach
– ident: ref20
  doi: 10.1109/MCG.2018.042731661
– ident: ref105
  doi: 10.1145/3587470
– ident: ref160
  doi: 10.1109/TVCG.2015.2467717
– ident: ref197
  doi: 10.1109/MCG.2022.3199727
– ident: ref114
  doi: 10.1109/TVCG.2018.2853721
– ident: ref125
  doi: 10.1109/TVCG.2019.2903946
– ident: ref139
  doi: 10.1111/cgf.14195
– ident: ref38
  doi: 10.1109/TVCG.2009.111
– ident: ref88
  doi: 10.1109/PacificVis56936.2023.00032
– ident: ref43
  doi: 10.1109/TVCG.2021.3114779
– ident: ref32
  doi: 10.1111/cgf.13406
– ident: ref91
  doi: 10.1109/PacificVis48177.2020.3542
– ident: ref15
  doi: 10.1109/VAST47406.2019.8986943
– ident: ref96
  doi: 10.1109/VAST50239.2020.00007
– ident: ref29
  doi: 10.1016/j.visinf.2017.01.006
– ident: ref82
  doi: 10.1109/TVCG.2023.3326934
– ident: ref106
  doi: 10.1109/TVCG.2017.2744683
– ident: ref128
  doi: 10.1109/TVCG.2020.3030461
– ident: ref85
  doi: 10.1109/PacificVis52677.2021.00032
– ident: ref94
  doi: 10.1109/TVCG.2021.3114850
– ident: ref127
  doi: 10.1109/MCG.2019.2919033
– ident: ref16
  doi: 10.1111/cgf.13844
– ident: ref162
  doi: 10.1109/VAST.2017.8585733
– ident: ref13
  doi: 10.1109/TVCG.2016.2598831
– ident: ref158
  doi: 10.1109/MCG.2022.3201465
– ident: ref166
  doi: 10.1109/TVCG.2018.2865043
– ident: ref49
  doi: 10.1109/TVCG.2017.2744158
– ident: ref90
  doi: 10.1109/VAST.2018.8802454
– ident: ref12
  doi: 10.1109/TVCG.2017.2744718
– ident: ref152
  doi: 10.1109/PacificVis53943.2022.00020
– ident: ref22
  doi: 10.1109/TVCG.2015.2467757
– ident: ref72
  doi: 10.1109/TVCG.2022.3148197
– ident: ref161
  doi: 10.1109/TVCG.2017.2745085
– ident: ref130
  doi: 10.1109/VIS47514.2020.00057
– ident: ref81
  doi: 10.1109/TVCG.2016.2598828
– ident: ref104
  doi: 10.1109/VIS49827.2021.9623271
– ident: ref4
  doi: 10.1109/VAST.2017.8585720
– ident: ref42
  doi: 10.1109/TVCG.2019.2934619
– ident: ref99
  doi: 10.1109/TVCG.2023.3326588
– ident: ref102
  doi: 10.1109/VIS47514.2020.00065
– ident: ref177
  doi: 10.1111/cgf.13972
– ident: ref48
  doi: 10.1109/VAST.2017.8585721
– ident: ref176
  doi: 10.1109/TVCG.2020.2995100
– ident: ref141
  doi: 10.1109/TVCG.2022.3209466
– ident: ref73
  doi: 10.1109/TNNLS.2020.2978386
– ident: ref146
  doi: 10.1109/TVCG.2022.3209435
– ident: ref187
  doi: 10.1109/TVCG.2020.3011155
– ident: ref156
  doi: 10.1109/TVCG.2022.3184186
– ident: ref183
  doi: 10.1109/TVCG.2021.3114694
– ident: ref23
  doi: 10.1111/cgf.14034
– ident: ref8
  doi: 10.1109/TVCG.2019.2903943
– ident: ref92
  doi: 10.1109/TVCG.2020.2969185
– ident: ref195
  doi: 10.1109/TVCG.2022.3182488
– ident: ref47
  doi: 10.21236/ADA273556
– ident: ref80
  doi: 10.1109/PacificVis48177.2020.7127
– ident: ref11
  doi: 10.1109/pacificvis48177.2020.7090
– ident: ref6
  doi: 10.1109/TVCG.2021.3114855
– ident: ref153
  doi: 10.1109/PacificVis53943.2022.00027
– ident: ref40
  doi: 10.1111/j.1467-8659.2011.01939.x
– ident: ref69
  doi: 10.1109/TVCG.2020.3030418
– ident: ref100
  doi: 10.1109/TVCG.2017.2744378
– ident: ref76
  doi: 10.1111/cgf.13962
– ident: ref190
  doi: 10.1109/TVCG.2022.3209423
– ident: ref126
  doi: 10.1111/cgf.13672
– ident: ref79
  doi: 10.1109/TVCG.2021.3138933
– ident: ref93
  doi: 10.1109/VAST.2018.8802509
– ident: ref170
  doi: 10.1109/PacificVis.2019.00044
– ident: ref171
  doi: 10.1111/cgf.13683
– ident: ref121
  doi: 10.1109/PacificVis.2018.00031
– ident: ref133
  doi: 10.1109/PacificVis48177.2020.2785
– ident: ref78
  doi: 10.1109/TVCG.2021.3114683
– ident: ref31
  doi: 10.1111/cgf.13681
– ident: ref9
  doi: 10.1109/TVCG.2020.3030342
– ident: ref154
  doi: 10.1109/PacificVis53943.2022.00029
– ident: ref181
  doi: 10.1109/TVCG.2020.2986996
– ident: ref131
  doi: 10.1109/VIS47514.2020.00062
– ident: ref64
  doi: 10.1109/VIS47514.2020.00061
– ident: ref21
  doi: 10.1109/TVCG.2018.2843369
– ident: ref7
  doi: 10.58248/pn633
– ident: ref24
  doi: 10.1111/cgf.13210
– ident: ref168
  doi: 10.1109/TVCG.2019.2934262
– ident: ref101
  doi: 10.1109/TVCG.2020.3012063
– ident: ref155
  doi: 10.1109/TVCG.2020.3045918
– ident: ref116
  doi: 10.1109/TVCG.2017.2744358
– ident: ref179
  doi: 10.14711/thesis-991012730263603412
– ident: ref129
  doi: 10.1109/TVCG.2020.3030384
– ident: ref108
  doi: 10.1177/14738716221130338
– ident: ref58
  doi: 10.1109/TVCG.2018.2816223
– ident: ref117
  doi: 10.1109/TVCG.2017.2745141
– ident: ref138
  doi: 10.1111/cgf.14302
– ident: ref135
  doi: 10.1109/TVCG.2021.3114793
– ident: ref157
  doi: 10.1109/TVCG.2021.3074010
– ident: ref5
  doi: 10.1109/TVCG.2020.3030350
– ident: ref41
  doi: 10.1016/j.compeleceng.2013.11.024
– ident: ref36
  doi: 10.1109/TVCG.2021.3057483
– ident: ref59
  doi: 10.1109/TVCG.2016.2598838
– start-page: 127
  volume-title: Proc. EuroVis Short Papers
  ident: ref180
  article-title: GaCoVi: A correlation visualization to support interpretability-aware feature selection for regression models
– ident: ref163
  doi: 10.1109/TVCG.2018.2864477
– ident: ref103
  doi: 10.1109/TVCG.2021.3114837
– ident: ref164
  doi: 10.1109/TVCG.2018.2864499
– ident: ref74
  doi: 10.1109/TVCG.2022.3148107
– ident: ref142
  doi: 10.1109/TVCG.2022.3209384
– ident: ref50
  doi: 10.1111/cgf.13453
– ident: ref27
  doi: 10.1109/TVCG.2019.2934629
– ident: ref132
  doi: 10.1109/VIS47514.2020.00064
– ident: ref147
  doi: 10.1109/TVCG.2022.3209347
– ident: ref172
  doi: 10.1109/MCG.2019.2922592
– year: 2020
  ident: ref71
  article-title: TUDataset: A collection of benchmark datasets for learning with graphs
– ident: ref97
  doi: 10.1109/TVCG.2014.2346660
– ident: ref62
  doi: 10.1007/s11263-015-0816-y
– ident: ref191
  doi: 10.1109/VIS54862.2022.00018
– ident: ref184
  doi: 10.1109/TVCG.2021.3114864
– ident: ref84
  doi: 10.1109/MCG.2018.2878902
– ident: ref134
  doi: 10.1109/PacificVis48177.2020.1031
– ident: ref193
  doi: 10.1111/cgf.14525
– ident: ref14
  doi: 10.1109/MSPEC.2022.9754503
– ident: ref119
  doi: 10.1109/TVCG.2018.2864500
– ident: ref192
  doi: 10.1109/VIS54862.2022.00019
– ident: ref182
  doi: 10.1109/TVCG.2021.3114836
– ident: ref185
  doi: 10.1109/PacificVis52677.2021.00038
– ident: ref198
  doi: 10.1109/TVCG.2022.3146806
– start-page: 85
  volume-title: Proc. EuroVis Short Papers
  ident: ref194
  article-title: Explaining black box with visual exploration of latent space
– ident: ref109
  doi: 10.1109/PACIFICVIS.2016.7465261
– ident: ref167
  doi: 10.1109/TVCG.2019.2934631
– ident: ref77
  doi: 10.1109/TVCG.2021.3114794
– ident: ref120
  doi: 10.1109/TVCG.2018.2865044
– ident: ref175
  doi: 10.1109/TVCG.2020.3030354
– ident: ref115
  doi: 10.1145/3604433
– ident: ref56
  doi: 10.1109/TVCG.2023.3261935
– ident: ref61
  doi: 10.1109/TVCG.2017.2744938
– ident: ref10
  doi: 10.1109/TVCG.2018.2864812
– ident: ref144
  doi: 10.1109/TVCG.2022.3209479
– ident: ref3
  doi: 10.1109/TVCG.2018.2865027
– ident: ref28
  doi: 10.1109/TVCG.2018.2864838
– ident: ref51
  doi: 10.1111/cgf.13667
– ident: ref55
  doi: 10.1109/TVCG.2020.3028976
– ident: ref178
  doi: 10.1111/cgf.13973
– ident: ref173
  doi: 10.1109/TVCG.2020.3028888
– ident: ref98
  doi: 10.1145/2702123.2702509
– ident: ref137
  doi: 10.1109/vis49827.2021.9623268
– ident: ref143
  doi: 10.1109/TVCG.2022.3209465
– ident: ref70
  doi: 10.1023/A:1009953814988
– ident: ref46
  doi: 10.1109/TVCG.2022.3141040
– ident: ref68
  doi: 10.1109/TVCG.2021.3076749
– ident: ref112
  doi: 10.1109/tvcg.2024.3388521/mm1
– ident: ref122
  doi: 10.1111/cgf.13417
– ident: ref165
  doi: 10.1109/TVCG.2018.2864475
– ident: ref118
  doi: 10.1109/TVCG.2018.2865230
– ident: ref65
  doi: 10.1109/5.726791
– ident: ref169
  doi: 10.1109/VISUAL.2019.8933619
– ident: ref39
  doi: 10.1007/s12650-018-0531-1
– ident: ref19
  doi: 10.1109/VAST50239.2020.00006
– year: 2009
  ident: ref60
  article-title: Learning multiple layers of features from tiny images
– ident: ref113
  doi: 10.1109/TVCG.2021.3114845
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref83
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: ref95
  article-title: Data-centric artificial intelligence: A survey
– ident: ref196
  doi: 10.1109/TVCG.2021.3102051
– ident: ref87
  doi: 10.1016/B978-155860915-0/50046-9
– ident: ref159
  doi: 10.1109/TVCG.2022.3184247
– ident: ref151
  doi: 10.1109/TVCG.2022.3165347
– ident: ref67
  doi: 10.1109/TVCG.2022.3209425
– ident: ref123
  doi: 10.1109/TVCG.2019.2934595
– ident: ref45
  doi: 10.1109/VAST47406.2019.8986948
– year: 2015
  ident: ref53
  article-title: Visualizing and understanding recurrent networks
– ident: ref17
  doi: 10.1109/TVCG.2022.3172107
– ident: ref124
  doi: 10.1109/VISUAL.2019.8933744
– ident: ref37
  doi: 10.1109/TVCG.2019.2921323
– ident: ref110
  doi: 10.1109/TVCG.2019.2934267
– ident: ref148
  doi: 10.1111/cgf.14524
– ident: ref1
  doi: 10.1038/nature14539
– ident: ref75
  doi: 10.1007/s10115-007-0103-5
– ident: ref33
  doi: 10.1109/INFVIS.2005.1532136
– start-page: 91
  volume-title: Proc. EuroVis Short Papers
  ident: ref150
  article-title: DASH: Visual analytics for debiasing image classification via user-driven synthetic data augmentation
– ident: ref25
  doi: 10.1007/s41095-020-0191-7
– year: 2020
  ident: ref66
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref35
  doi: 10.1109/VL.1996.545307
– ident: ref26
  doi: 10.1007/s41095-023-0393-x
– volume-title: Deep Learning
  year: 2016
  ident: ref2
– ident: ref34
  doi: 10.1109/TVCG.2013.124
– ident: ref145
  doi: 10.1109/TVCG.2022.3209462
– ident: ref54
  doi: 10.1109/VISUAL.2019.8933677
– ident: ref89
  doi: 10.1109/TVCG.2018.2864504
– ident: ref63
  doi: 10.1109/TVCG.2019.2934659
– ident: ref57
  doi: 10.1109/MSP.2012.2211477
– ident: ref140
  doi: 10.1111/cgf.14418
SSID ssj0014489
Score 2.5239797
Snippet The past decade has witnessed a plethora of works that leverage the power of visualization (VIS) to interpret machine learning (ML) models. The corresponding...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7637
SubjectTerms Analytical models
Data models
Explainable AI
machine learning
Surveys
Task analysis
Taxonomy
VIS4ML
Visual analytics
visualization
Title Visual Analytics for Machine Learning: A Data Perspective Survey
URI https://ieeexplore.ieee.org/document/10412199
https://www.ncbi.nlm.nih.gov/pubmed/38261496
https://www.proquest.com/docview/2918198876
Volume 30
WOSCitedRecordID wos001346124800017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1941-0506
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014489
  issn: 1077-2626
  databaseCode: RIE
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4VVCE48C7dFpCROCEFkvgV91RECxwoQuKhvUV2Mq6Q0C7a3SD13zN2sls4gMQpOdhO5JmJv8nMfAOwr1OnNNZZQmefT0TtMDFSYpL6QunaS57bWCh8oS8vi37fXHXF6rEWBhFj8hkehtsYy6-HVRN-lZGFi4wszMzBnNaqLdaahQzIzzBtgqFOcoLpXQgzS83Rzd3JGbmCuTjkXIa43iIscMLV5B2oV-dRbLDyNtaMZ87pygffdhWWO3DJjlttWINPOFiHpReUgxvw8-5-3IQxgYwkUDQzQq3sT0ypRNaxrf79wY7ZLzux7Op_LSa7bkZP-G8Tbk9_35ycJ10XhaQiY50kygrpuPZOGSFs4WXheZVVVqJylqeWG7r63Hvhydir0HijQOkKm4bMVIJrX2B-MBzgV2C8xsBmIzOnCmFr4Qx6p7ms85yWS7EH6XQvy6qjGA-dLh7K6GqkpgySKIMkyk4SPTiYTXls-TXeG7wZtvnFwHaHe7A3lVhJ1hFCHnaAw2Zc5oYQjKEPqerBVivK2eypBnx7Y9XvsBge3uaubMP8ZNTgDnyunib349EuqWC_2I0q-AxfmNOr
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yKGlyyKtpu81LgZ4KTmVLsq2eGvImmyXQbcjNSPaoBMpu2V0H-u8zkr3b9JBATvZBEkIzY33jmfkG4HPGbZphFUd097lIVhYjrRRG3OVpVjklEhMKhbtZr5ff3embtlg91MIgYkg-w0P_GmL51bCs_a8ysnAZk4XpeVhUUia8KdeaBQ3I09BNimEWJQTU2yBmzPXX_u3xOTmDiTwUQvnI3jIsCULW5B-k_91IocXK82gz3Dpna6_c7zqstvCSHTX6sAFzONiElSekg-_g--39uPZjPB2JJ2lmhFvZdUiqRNbyrf76xo7YiZkYdvOvGpP9qEcP-HcLfp6d9o8voraPQlSSuU6i1EhlReZsqqU0uVO5E2VcGoWpNYIboenpEuekI3MvfeuNHJXNDfe5qQTY3sPCYDjAj8BEhZ7PRsU2zaWppNXobCZUlSS0HMcO8OlZFmVLMu57XfwugrPBdeElUXhJFK0kOvBlNuVPw7Dx0uAtf8xPBjYn3IGDqcQKsg8f9DADHNbjItGEYTR9StMOfGhEOZs91YBPz6y6D28v-tfdonvZu9qGZb-RJpNlBxYmoxp34U35MLkfj_aCIj4CkWbWCg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visual+Analytics+for+Machine+Learning%3A+A+Data+Perspective+Survey&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Wang%2C+Junpeng&rft.au=Liu%2C+Shixia&rft.au=Zhang%2C+Wei&rft.date=2024-12-01&rft.issn=1941-0506&rft.eissn=1941-0506&rft.volume=30&rft.issue=12&rft.spage=7637&rft_id=info:doi/10.1109%2FTVCG.2024.3357065&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon