S2VQ-VAE: Semi-Supervised Vector Quantised-Variational AutoEncoder for Automatic Evaluation of Trail Making Test

Background: Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices. Methodology: In this study, we...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of biomedical and health informatics Vol. 28; no. 8; pp. 4456 - 4470
Main Authors: Tang, Zeshen, Tang, Shiyu, Wang, Haoran, Li, Renren, Zhang, Xiaochen, Zhang, Wei, Yuan, Xiao, Zang, Yaning, Li, Yanping, Zhou, Tian, Li, Yunxia
Format: Journal Article
Language:English
Published: United States IEEE 01.08.2024
Subjects:
ISSN:2168-2194, 2168-2208, 2168-2208
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Background: Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices. Methodology: In this study, we aimed to develop an automated method for screening cognitive impairment, building on paper- and electronic TMTs. We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE). Within S2VQ-VAE, we incorporated intra- and inter-class correlation losses to disentangle class-related factors. These factors were then combined with various real-time obtainable features (including demographic, time-related, pressure-related, and jerk-related features) to create a robust feature engineering block. Finally, we identified the light gradient boosting machine as the optimal classifier. The experiments were conducted on a dataset collected from older adults in the community. Results: The experimental results showed that the proposed multi-type feature fusion method outperformed the conventional method used in paper-based TMTs and the existing VAE-based feature extraction in terms of screening performance. Conclusions: In conclusion, the proposed deep representation learning method significantly enhances the cognitive diagnosis capabilities of behavior-based TMTs and streamlines large-scale community-based cognitive impairment screening while reducing the workload of professional healthcare staff.
AbstractList Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices.BACKGROUNDComputer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices.In this study, we aimed to develop an automated method for screening cognitive impairment, building on paper- and electronic TMTs. We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE). Within S2VQ-VAE, we incorporated intra- and inter-class correlation losses to disentangle class-related factors. These factors were then combined with various real-time obtainable features (including demographic, time-related, pressure-related, and jerk-related features) to create a robust feature engineering block. Finally, we identified the light gradient boosting machine as the optimal classifier. The experiments were conducted on a dataset collected from older adults in the community.METHODOLOGYIn this study, we aimed to develop an automated method for screening cognitive impairment, building on paper- and electronic TMTs. We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE). Within S2VQ-VAE, we incorporated intra- and inter-class correlation losses to disentangle class-related factors. These factors were then combined with various real-time obtainable features (including demographic, time-related, pressure-related, and jerk-related features) to create a robust feature engineering block. Finally, we identified the light gradient boosting machine as the optimal classifier. The experiments were conducted on a dataset collected from older adults in the community.The experimental results showed that the proposed multi-type feature fusion method outperformed the conventional method used in paper-based TMTs and the existing VAE-based feature extraction in terms of screening performance.RESULTSThe experimental results showed that the proposed multi-type feature fusion method outperformed the conventional method used in paper-based TMTs and the existing VAE-based feature extraction in terms of screening performance.In conclusion, the proposed deep representation learning method significantly enhances the cognitive diagnosis capabilities of behavior-based TMTs and streamlines large-scale community-based cognitive impairment screening while reducing the workload of professional healthcare staff.CONCLUSIONSIn conclusion, the proposed deep representation learning method significantly enhances the cognitive diagnosis capabilities of behavior-based TMTs and streamlines large-scale community-based cognitive impairment screening while reducing the workload of professional healthcare staff.
Background: Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices. Methodology: In this study, we aimed to develop an automated method for screening cognitive impairment, building on paper- and electronic TMTs. We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE). Within S2VQ-VAE, we incorporated intra- and inter-class correlation losses to disentangle class-related factors. These factors were then combined with various real-time obtainable features (including demographic, time-related, pressure-related, and jerk-related features) to create a robust feature engineering block. Finally, we identified the light gradient boosting machine as the optimal classifier. The experiments were conducted on a dataset collected from older adults in the community. Results: The experimental results showed that the proposed multi-type feature fusion method outperformed the conventional method used in paper-based TMTs and the existing VAE-based feature extraction in terms of screening performance. Conclusions: In conclusion, the proposed deep representation learning method significantly enhances the cognitive diagnosis capabilities of behavior-based TMTs and streamlines large-scale community-based cognitive impairment screening while reducing the workload of professional healthcare staff.
Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically valid, and convenient cognitive assessments using multimodal sensing technology on digital devices. In this study, we aimed to develop an automated method for screening cognitive impairment, building on paper- and electronic TMTs. We proposed a novel deep representation learning approach named Semi-Supervised Vector Quantised-Variational AutoEncoder (S2VQ-VAE). Within S2VQ-VAE, we incorporated intra- and inter-class correlation losses to disentangle class-related factors. These factors were then combined with various real-time obtainable features (including demographic, time-related, pressure-related, and jerk-related features) to create a robust feature engineering block. Finally, we identified the light gradient boosting machine as the optimal classifier. The experiments were conducted on a dataset collected from older adults in the community. The experimental results showed that the proposed multi-type feature fusion method outperformed the conventional method used in paper-based TMTs and the existing VAE-based feature extraction in terms of screening performance. In conclusion, the proposed deep representation learning method significantly enhances the cognitive diagnosis capabilities of behavior-based TMTs and streamlines large-scale community-based cognitive impairment screening while reducing the workload of professional healthcare staff.
Author Zhou, Tian
Wang, Haoran
Li, Yunxia
Zhang, Xiaochen
Zhang, Wei
Li, Yanping
Zang, Yaning
Tang, Shiyu
Li, Renren
Yuan, Xiao
Tang, Zeshen
Author_xml – sequence: 1
  givenname: Zeshen
  orcidid: 0000-0001-8765-6464
  surname: Tang
  fullname: Tang, Zeshen
  email: 2011610@tongji.edu.cn
  organization: College of Electronic and Information Engineering, Tongji University, Shanghai, China
– sequence: 2
  givenname: Shiyu
  surname: Tang
  fullname: Tang, Shiyu
  email: tangshiyuzoe@163.com
  organization: Naval Medical Center, Naval Medical University, Shanghai, China
– sequence: 3
  givenname: Haoran
  orcidid: 0000-0002-4622-0119
  surname: Wang
  fullname: Wang, Haoran
  email: 1910664@tongji.edu.cn
  organization: College of Electronic and Information Engineering, Tongji University, Shanghai, China
– sequence: 4
  givenname: Renren
  orcidid: 0000-0003-3781-9848
  surname: Li
  fullname: Li, Renren
  email: 1453097lee@tongji.edu.cn
  organization: Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
– sequence: 5
  givenname: Xiaochen
  surname: Zhang
  fullname: Zhang, Xiaochen
  email: zxc_9803@163.com
  organization: Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
– sequence: 6
  givenname: Wei
  orcidid: 0000-0003-4970-2073
  surname: Zhang
  fullname: Zhang, Wei
  email: zhangweihb@hotmail.com
  organization: Department of Neuropsychology, Zhongnan Hospital of Wuhan University, Wuhan, China
– sequence: 7
  givenname: Xiao
  surname: Yuan
  fullname: Yuan, Xiao
  email: 1043269491@qq.com
  organization: Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
– sequence: 8
  givenname: Yaning
  surname: Zang
  fullname: Zang, Yaning
  email: zangyn1015@163.com
  organization: Chengdu Second People's Hospital, Sichuan, China
– sequence: 9
  givenname: Yanping
  surname: Li
  fullname: Li, Yanping
  email: 2011611@tongji.edu.cn
  organization: College of Electronic and Information Engineering, Tongji University, Shanghai, China
– sequence: 10
  givenname: Tian
  orcidid: 0009-0005-6773-6308
  surname: Zhou
  fullname: Zhou, Tian
  email: 1941716@tongji.edu.cn
  organization: College of Electronic and Information Engineering, Tongji University, Shanghai, China
– sequence: 11
  givenname: Yunxia
  orcidid: 0000-0002-0626-2584
  surname: Li
  fullname: Li, Yunxia
  email: doctorliyunxia@163.com
  organization: Department of Neurology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38819974$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS3UipbSD4CEkI9csvhPnNjcttVCi1pV1a72Gk2dMTIk8WInlfj2ON0tQhzqy9gzv-eR3ntDjoYwICHvOFtwzsynbxdX1wvBRLmQJau15q_IqeCVLoRg-uj5zk15Qs5T-sHy0bllqtfkRGbcmLo8Jbu12N4X2-XqM11j74v1tMP46BO2dIt2DJHeTzCMc6PYQvQw-jBAR5fTGFaDDS1G6jI1v_s8tHT1CN30hNHg6CaC7-gt_PTDd7rBNL4lxw66hOeHekY2X1aby6vi5u7r9eXyprBSiLFQXCvtajRcCrBgHHA0Gkpg1ipTSedQWW1AKcAHqWQramdqBi1UrVGtPCMf99_uYvg15b1N75PFroMBw5QaySpZKmN4ndEPB3R66LFtdtH3EH83zyZlgO8BG0NKEd1fhLNmzqKZs2jmLJpDFllT_6exfnxyZZwdeVH5fq_0iPjPJlVKVhr5B_RFln0
CODEN IJBHA9
CitedBy_id crossref_primary_10_1142_S021812662550433X
crossref_primary_10_1177_13872877251343241
Cites_doi 10.2466/pms.1958.8.3.271
10.1371/journal.pone.0089078
10.1016/j.future.2021.09.032
10.1145/3196959.3196972
10.1109/taffc.2023.3285997
10.1145/233269.233324
10.2307/3212444
10.1080/13854040590947498
10.1037/h0044509
10.12659/msm.889776
10.1111/j.1467-8659.1990.tb00398.x
10.2196/42637
10.30773/pi.2018.07.22
10.1136/gpsych-2022-100751
10.1007/978-3-642-12098-5_3
10.1111/ggi.12014
10.1016/j.knosys.2021.107338
10.1109/JBHI.2014.2299793
10.1109/ICIEV.2017.8338607
10.3389/fnhum.2017.00496
10.1016/j.future.2023.05.012
10.1016/j.ins.2019.07.026
10.1109/TPAMI.2013.50
10.3791/60456-v
10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E
10.1002/int.22957
10.5555/3001460.3001507
10.1145/1066157.1066213
10.1076/jcen.20.2.280.1161
10.1007/978-3-030-32281-6_3
10.1093/geroni/igy038
10.1609/aaai.v33i01.33015885
10.1109/JBHI.2023.3240508
10.1016/j.knosys.2022.109323
10.1016/j.jalz.2011.03.003
10.1016/j.aei.2021.101317
10.1609/aaai.v33i01.33013894
10.1109/TFUZZ.2020.2979150
10.1145/1247480.1247546
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/JBHI.2024.3407881
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 4470
ExternalDocumentID 38819974
10_1109_JBHI_2024_3407881
10543049
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China; National Science Foundation of China
  grantid: 81671307
  funderid: 10.13039/501100001809
– fundername: STI2030-Major Projects
  grantid: 2022ZD0211600
– fundername: Shanghai Municipal Health Commission
  grantid: 2022JC018
  funderid: 10.13039/100017950
– fundername: Shanghai Committee of Science and Technology
  grantid: 22Y11903500
– fundername: Shanghai Hospital Development Center Foundation
  grantid: SHDC12021110
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c322t-51858f7e9132aca9fa1e98a4a0cc5963ffe5c89a55aeb353d27f970ada6d95d3
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001301988500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2194
2168-2208
IngestDate Sun Sep 28 00:57:56 EDT 2025
Thu Apr 03 07:03:43 EDT 2025
Sat Nov 29 04:18:37 EST 2025
Tue Nov 18 21:39:25 EST 2025
Wed Aug 27 02:35:22 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-51858f7e9132aca9fa1e98a4a0cc5963ffe5c89a55aeb353d27f970ada6d95d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8765-6464
0000-0002-4622-0119
0000-0003-3781-9848
0009-0005-6773-6308
0000-0002-0626-2584
0000-0003-4970-2073
PMID 38819974
PQID 3063459917
PQPubID 23479
PageCount 15
ParticipantIDs crossref_primary_10_1109_JBHI_2024_3407881
proquest_miscellaneous_3063459917
ieee_primary_10543049
pubmed_primary_38819974
crossref_citationtrail_10_1109_JBHI_2024_3407881
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationTitleAlternate IEEE J Biomed Health Inform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
Kingma (ref40) 2014
ref15
ref14
Lundberg (ref50) 2017
Kingma (ref36) 2014; 1050
ref52
ref11
ref10
Kim (ref44) 2018
ref17
ref16
ref19
ref18
Paige (ref46) 2017
ref51
Lopez (ref45) 2018
Maaten (ref49) 2008; 9
ref48
ref47
ref41
ref43
Ankerst (ref33) 1999
ref8
ref7
Dupont (ref38) 2018
ref9
ref4
ref3
ref6
Gauthier (ref2) 2021
ref5
ref35
ref34
ref31
ref30
ref32
ref1
Chen (ref37) 2018
Oord (ref39) 2017
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Higgins (ref42) 2017
References_xml – ident: ref4
  doi: 10.2466/pms.1958.8.3.271
– ident: ref52
  doi: 10.1371/journal.pone.0089078
– ident: ref19
  doi: 10.1016/j.future.2021.09.032
– ident: ref35
  doi: 10.1145/3196959.3196972
– ident: ref17
  doi: 10.1109/taffc.2023.3285997
– ident: ref32
  doi: 10.1145/233269.233324
– volume: 9
  start-page: 2579
  issue: 11
  year: 2008
  ident: ref49
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref27
  doi: 10.2307/3212444
– ident: ref26
  doi: 10.1080/13854040590947498
– start-page: 4766
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref50
  article-title: A unified approach to interpreting model predictions
– ident: ref3
  doi: 10.1037/h0044509
– ident: ref6
  doi: 10.12659/msm.889776
– ident: ref29
  doi: 10.1111/j.1467-8659.1990.tb00398.x
– ident: ref22
  doi: 10.2196/42637
– ident: ref7
  doi: 10.30773/pi.2018.07.22
– ident: ref1
  doi: 10.1136/gpsych-2022-100751
– start-page: 2610
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref37
  article-title: Isolating sources of disentanglement in variational autoencoders
– ident: ref34
  doi: 10.1007/978-3-642-12098-5_3
– ident: ref9
  doi: 10.1111/ggi.12014
– ident: ref20
  doi: 10.1016/j.knosys.2021.107338
– ident: ref11
  doi: 10.1109/JBHI.2014.2299793
– ident: ref51
  doi: 10.1109/ICIEV.2017.8338607
– ident: ref10
  doi: 10.3389/fnhum.2017.00496
– volume: 1050
  year: 2014
  ident: ref36
  article-title: Auto-encoding variational bayes
  publication-title: Stat
– ident: ref21
  doi: 10.1016/j.future.2023.05.012
– ident: ref13
  doi: 10.1016/j.ins.2019.07.026
– ident: ref41
  doi: 10.1109/TPAMI.2013.50
– ident: ref8
  doi: 10.3791/60456-v
– ident: ref24
  doi: 10.1002/1097-4679(198707)43:4<402::AID-JCLP2270430411>3.0.CO;2-E
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  year: 2017
  ident: ref42
  article-title: $\beta$-VAE: Learning basic visual concepts with a constrained variational framework
– ident: ref23
  doi: 10.1002/int.22957
– ident: ref31
  doi: 10.5555/3001460.3001507
– start-page: 5926
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref46
  article-title: Learning disentangled representations with semi-supervised deep generative models
– ident: ref28
  doi: 10.1145/1066157.1066213
– start-page: 6114
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref45
  article-title: Information constraints on auto-encoding variational bayes
– ident: ref25
  doi: 10.1076/jcen.20.2.280.1161
– ident: ref14
  doi: 10.1007/978-3-030-32281-6_3
– ident: ref12
  doi: 10.1093/geroni/igy038
– ident: ref43
  doi: 10.1609/aaai.v33i01.33015885
– ident: ref5
  doi: 10.1109/JBHI.2023.3240508
– start-page: 2649
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2018
  ident: ref44
  article-title: Disentangling by factorising
– start-page: 3581
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2014
  ident: ref40
  article-title: Semi-supervised learning with deep generative models
– ident: ref16
  doi: 10.1016/j.knosys.2022.109323
– ident: ref47
  doi: 10.1016/j.jalz.2011.03.003
– ident: ref18
  doi: 10.1016/j.aei.2021.101317
– ident: ref48
  doi: 10.1609/aaai.v33i01.33013894
– start-page: 49
  volume-title: Proc. ACM SIGMOD Int. Conf. Manag. Data Rec.
  year: 1999
  ident: ref33
  article-title: Optics: Ordering points to identify the clustering structure
– start-page: 19
  year: 2021
  ident: ref2
  article-title: World alzheimer report 2021: Journey through the diagnosis of dementia
– ident: ref15
  doi: 10.1109/TFUZZ.2020.2979150
– start-page: 6307
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2017
  ident: ref39
  article-title: Neural discrete representation learning
– ident: ref30
  doi: 10.1145/1247480.1247546
– start-page: 710
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2018
  ident: ref38
  article-title: Learning disentangled joint continuous and discrete representations
SSID ssj0000816896
Score 2.4309416
Snippet Background: Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective,...
Computer-aided detection of cognitive impairment garnered increasing attention, offering older adults in the community access to more objective, ecologically...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4456
SubjectTerms Aged
Aged, 80 and over
Algorithms
Cognitive Dysfunction - diagnosis
Cognitive impairment
computer-aided diagnosis
Correlation
Deep Learning
Diagnosis, Computer-Assisted - methods
Feature extraction
Female
Hospitals
Humans
Male
Neurology
Older adults
semi-supervised
Signal Processing, Computer-Assisted
Supervised Machine Learning
Task analysis
Trail Making Test
trail making test (TMT)
Trajectory
variational autoencoder (VAE)
vector quantization (VQ)
Title S2VQ-VAE: Semi-Supervised Vector Quantised-Variational AutoEncoder for Automatic Evaluation of Trail Making Test
URI https://ieeexplore.ieee.org/document/10543049
https://www.ncbi.nlm.nih.gov/pubmed/38819974
https://www.proquest.com/docview/3063459917
Volume 28
WOSCitedRecordID wos001301988500040&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2208
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816896
  issn: 2168-2194
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD6oiPji_TJvRPBJiPaSNI1vUyYqKMrG2FtJkxQEbcdc_f2epN3QBwWfmoYkbfPlNOeS5AM40yHXzHGEqZAZyowInKMppVwGcR6KnKMB58kmxNNTOhrJ53azut8LY631i8_shUv6WL6pdO1cZSjhnLmw0CIsCpE0m7XmDhXPIOH5uCJMUJRE1kYxw0BePlzf3aM1GLGL2EWuUscQE-NFSsF-TEmeY-V3ddNPO7fr_3zhDVhr9UvSbQbEJizYcgtWHtsI-jaM-9HwhQ67vSvSt--vtF-P3d_iwxoy9A588lJjZ7sMOkQ7uvUVkm49rXql2wA_Iajn-nt_2ivpzc8LJ1VBcO57fSOPnuOKDPDLdmBw2xvc3NGWdYFqFO4p5TiDp4WwEu1UpZUsVGhlqpgKtOYorkVhuU6l4lwhjjw2kSikCJRRiZHcxLuwVFal3QdiE6k0NmbCwDKV6zyKMEvYRCU6R7W0A8Gs3zPdnkjuiDHeMm-ZBDJzqGUOtaxFrQPn8yrj5jiOvwrvOEi-FWzQ6MDpDN0MhclFSFRpq_ojQ_spZhxVZtGBvQb2ee3ZaDn4pdVDWHUPbxYHHsHSdFLbY1jWnwjZ5ARH7Cg98SP2Cxjf5AM
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bb9sgFD7asmnry65dm3UXJu1pEi22IZi-pVOiZEuiRYmivlkYsFSptaM03u_fATvR-pBJezJGgDAfx5wL8AF8NZEw3HOE6Yhbyq1k3tGUUqFYkkcyF2jABbIJOZul19fqV3tYPZyFcc6FzWfu3CdDLN9WpvauMpRwwX1Y6DE8EZzHrDmutXepBA6JwMgVY4KiLPI2jhkxdfHjajRGezDm54mPXaWeIybBh1KSP1iUAsvKYYUzLDzDl__Z5VfwotUwSb-ZEq_hkSvfwLNpG0N_C-tFvJrTVX9wSRbu7oYu6rX_X9w7S1bBhU_mNQ63z6ArtKRbbyHp19tqUPoj8BuCmm54D_e9ksH-xnBSFQRXv5tbMg0sV2SJX3YMy-Fg-X1EW94FalC8t1TgGp4W0im0VLXRqtCRU6nmmhkjUGCLwgmTKi2ERiRFYmNZKMm01T2rhE3eQaesSncKxPWUNtiYjZjjOjd5HGOWdD3dMzkqpl1gu3HPTHsnuafGuM2CbcJU5lHLPGpZi1oXvu2rrJsLOf5V-NhD8lfBBo0ufNmhm6E4-RiJLl1V32doQSVcoNIsu3DSwL6vvZst7w-0-hmej5bTSTYZz36ewZHvSLNV8AN0tpvafYSn5jfCt_kU5u0fu8TmYg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=S2VQ-VAE%3A+Semi-Supervised+Vector+Quantised-Variational+AutoEncoder+for+Automatic+Evaluation+of+Trail+Making+Test&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Tang%2C+Zeshen&rft.au=Tang%2C+Shiyu&rft.au=Wang%2C+Haoran&rft.au=Li%2C+Renren&rft.date=2024-08-01&rft.eissn=2168-2208&rft.volume=28&rft.issue=8&rft.spage=4456&rft_id=info:doi/10.1109%2FJBHI.2024.3407881&rft_id=info%3Apmid%2F38819974&rft.externalDocID=38819974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon