Adaptive Stress Testing: Finding Likely Failure Events with Reinforcement Learning

Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. In many applications such as autonomous driving, failures cannot be completely...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:The Journal of artificial intelligence research Ročník 69; s. 1165 - 1201
Hlavní autori: Lee, Ritchie, Mengshoel, Ole J., Saksena, Anshu, Gardner, Ryan W., Genin, Daniel, Silbermann, Joshua, Owen, Michael, Kochenderfer, Mykel J.
Médium: Konferenčný príspevok.. Journal Article
Jazyk:English
Vydavateľské údaje: Ames Research Center AI Access Foundation, Inc 06.12.2020
AI Access Foundation
Predmet:
ISSN:1076-9757, 1943-5037, 1076-9757
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. In many applications such as autonomous driving, failures cannot be completely eliminated due to the complex stochastic environment in which the system operates.As a result, safety validation is not only concerned about whether a failure can occur, but also discovering which failures are most likely to occur. This article presents adaptive stress testing (AST), a framework for finding the most likely path to a failure event in simulation. We consider a general black box setting for partially observable and continuous-valued systems operating in an environment with stochastic disturbances. We formulate the problem as a Markov decision process and use reinforcement learning to optimize it. The approach is simulation-based and does not require internal knowledge of the system, making it suitable for black-box testing of large systems. We present different formulations depending on whether the state is fully observable or partially observable. In the latter case, we present a modified Monte Carlo tree search algorithm that only requires access to the pseudorandom number generator of the simulator to overcome partial observability. We also present an extension of the framework, called differential adaptive stress testing (DAST), that can find failures that occur in one system but not in another. This type of differential analysis is useful in applications such as regression testing, where we are concerned with finding areas of relative weakness compared to a baseline. We demonstrate the effectiveness of the approach on an aircraft collision avoidance application, where a prototype aircraft collision avoidance system is stress tested to find the most likely scenarios of near mid-air collision.
AbstractList Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps, such as aircraft collision avoidance systems and autonomous cars. In many applications such as autonomous driving, failures cannot be completely eliminated due to the complex stochastic environment in which the system operates. As a result, safety validation is not only concerned about whether a failure can occur, but also discovering which failures are most likely to occur. This article presents adaptive stress testing (AST), a framework for finding the most likely path to a failure event in simulation. We consider a general black box setting for partially observable and continuous-valued systems operating in an environment with stochastic disturbances. We formulate the problem as a Markov decision process and use reinforcement learning to optimize it. The approach is simulation-based and does not require internal knowledge of the system, making it suitable for black-box testing of large systems. We present different formulations depending on whether the state is fully observable or partially observable. In the latter case, we present a modified Monte Carlo tree search algorithm that only requires access to the pseudorandom number generator of the simulator to overcome partial observability. We also present an extension of the framework, called differential adaptive stress testing (DAST), that can find failures that occur in one system but not in another. This type of differential analysis is useful in applications such as regression testing, where we are concerned with finding areas of relative weakness compared to a baseline. We demonstrate the effectiveness of the approach on an aircraft collision avoidance application, where a prototype aircraft collision avoidance system is stress tested to find the most likely scenarios of near mid-air collision.
Audience PUBLIC
Author Genin, Daniel
Owen, Michael
Lee, Ritchie
Silbermann, Joshua
Gardner, Ryan W.
Kochenderfer, Mykel J.
Mengshoel, Ole J.
Saksena, Anshu
Author_xml – sequence: 1
  givenname: Ritchie
  surname: Lee
  fullname: Lee, Ritchie
  organization: Ames Research Center
– sequence: 2
  givenname: Ole J.
  surname: Mengshoel
  fullname: Mengshoel, Ole J.
  organization: Norwegian University of Science and Technology
– sequence: 3
  givenname: Anshu
  surname: Saksena
  fullname: Saksena, Anshu
  organization: Johns Hopkins University Applied Physics Laboratory
– sequence: 4
  givenname: Ryan W.
  surname: Gardner
  fullname: Gardner, Ryan W.
  organization: Johns Hopkins University Applied Physics Laboratory
– sequence: 5
  givenname: Daniel
  surname: Genin
  fullname: Genin, Daniel
  organization: Johns Hopkins University Applied Physics Laboratory
– sequence: 6
  givenname: Joshua
  surname: Silbermann
  fullname: Silbermann, Joshua
  organization: Johns Hopkins University Applied Physics Laboratory
– sequence: 7
  givenname: Michael
  surname: Owen
  fullname: Owen, Michael
  organization: MIT Lincoln Laboratory
– sequence: 8
  givenname: Mykel J.
  surname: Kochenderfer
  fullname: Kochenderfer, Mykel J.
  organization: Stanford University
BookMark eNp1kEtPAjEYRRujiYDuXLpo4tbBPmhnxh0hoCaTmCCum04fWoQOtgXDv7eIKxNX_dKe296ePjj1nTcAXGE0xBzTu6V0YYiHmOAanYAerke0YIiWp3lGJS_qkpXnoB_jEqF8SKoemI-13CS3M_AlBRMjXJiYnH-7hzPndR5g4z7Mag9n0q22wcDpzvgU4ZdL73BunLddUGad92BjZPA5cQHOrFxFc_m7DsDrbLqYPBbN88PTZNwUihKSilGrlJLWkloyigjmqtUVKRXRvDW8HmlDcCsZZwzbupTYUqYtp5pXmJctNXQAbo73bkL3uc21xbLbBp-fFIQxShiqKp6p2yOlQhdjMFZsglvLsBcYiYM1cbAmsPixlnHyB1cuyeQ6n0I28F_o-hjyMkqRydwg_yhLrnJ9-g3dg3vz
CitedBy_id crossref_primary_10_1007_s13272_025_00815_4
crossref_primary_10_1016_j_oceaneng_2023_114455
crossref_primary_10_1016_j_cirp_2022_05_002
crossref_primary_10_1016_j_ifacol_2022_10_472
crossref_primary_10_1109_TASE_2023_3297984
crossref_primary_10_1016_j_trc_2025_105106
crossref_primary_10_1109_LRA_2021_3133612
crossref_primary_10_1109_TIFS_2023_3309160
crossref_primary_10_1038_s41598_025_11593_8
crossref_primary_10_1177_1748006X211069277
crossref_primary_10_1145_3680468
crossref_primary_10_1007_s11390_024_2900_7
crossref_primary_10_1016_j_inffus_2025_103729
ContentType Conference Proceeding
Journal Article
Copyright Copyright Determination: PUBLIC_USE_PERMITTED
2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
Copyright_xml – notice: Copyright Determination: PUBLIC_USE_PERMITTED
– notice: 2020. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
DBID CYE
CYI
AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1613/jair.1.12190
DatabaseName NASA Scientific and Technical Information
NASA Technical Reports Server
CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1943-5037
1076-9757
EndPage 1201
ExternalDocumentID 10_1613_jair_1_12190
20210018655
GrantInformation DTRT5715D30011
340428.02.20.01.01
GroupedDBID .DC
29J
2WC
5GY
5VS
AAKMM
AAKPC
AALFJ
AAYFX
ACGFO
ACM
ADBBV
ADBSK
ADMLS
AEFXT
AEJOY
AENEX
AFFHD
AFKRA
AFWXC
AKRVB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CYE
CYI
E3Z
EBS
EJD
F5P
FRJ
FRP
GROUPED_DOAJ
GUFHI
HCIFZ
K7-
KQ8
LHSKQ
LPJ
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
RNS
TR2
XSB
AAYXX
CITATION
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c322t-4bcccaff29a530216cbd827c2d6be694de21ba56551f97a1f35df63d68167b3e3
IEDL.DBID K7-
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000606811900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-9757
IngestDate Sun Nov 09 07:25:19 EST 2025
Tue Nov 18 22:23:34 EST 2025
Sat Nov 29 05:27:06 EST 2025
Fri Nov 21 15:49:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Adaptive Stress Testing
Reinforcement Learning
Collision Avoidance
Verification And Validation
Acas X
Safety-Critical Systems
Language English
LinkModel DirectLink
MeetingName 30th International Joint Conference on Artificial Intelligence (IJCAI-21)
MergedId FETCHMERGED-LOGICAL-c322t-4bcccaff29a530216cbd827c2d6be694de21ba56551f97a1f35df63d68167b3e3
Notes ARC
Ames Research Center
Virtual
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2553250886?pq-origsite=%requestingapplication%
PQID 2553250886
PQPubID 5160723
PageCount 37
ParticipantIDs proquest_journals_2553250886
crossref_primary_10_1613_jair_1_12190
crossref_citationtrail_10_1613_jair_1_12190
nasa_ntrs_20210018655
PublicationCentury 2000
PublicationDate 2020-12-06
PublicationDateYYYYMMDD 2020-12-06
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-06
  day: 06
PublicationDecade 2020
PublicationPlace Ames Research Center
PublicationPlace_xml – name: Ames Research Center
– name: San Francisco
PublicationTitle The Journal of artificial intelligence research
PublicationYear 2020
Publisher AI Access Foundation, Inc
AI Access Foundation
Publisher_xml – name: AI Access Foundation, Inc
– name: AI Access Foundation
SSID ssj0019428
Score 2.5402966
Snippet Finding the most likely path to a set of failure states is important to the analysis of safety-critical systems that operate over a sequence of time steps,...
SourceID proquest
crossref
nasa
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1165
SubjectTerms Aircraft
Aircraft accidents
Artificial intelligence
Autonomous cars
Collision avoidance
Collisions
Computer simulation
Cybernetics, Artificial Intelligence And Robotics
Failure
Failure analysis
Flight data recorders
Learning
Markov processes
Midair collisions
Pseudorandom
Safety critical
Search algorithms
Statistics And Probability
Systems Analysis And Operations Research
Title Adaptive Stress Testing: Finding Likely Failure Events with Reinforcement Learning
URI https://ntrs.nasa.gov/citations/20210018655
https://www.proquest.com/docview/2553250886
Volume 69
WOSCitedRecordID wos000606811900028&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LTxsxELbK48CltDxEgEY-wAm5xF7HXveCACWiKkRRoBWcVl4_oqUohGyo1H9fj-NESBVcuK4ta-VvPJ4Zz8yH0IE3NhdcZER4rQl3VhHFlSTKWJfZzLZ05Dr8dSl7vfz2VvVTwK1OaZVznRgVtX00ECM_DqZvxsCaECfjJwKsUfC6mig0ltAKZYyCnP-QZPGKoDiblcJJQZRsy5T4Hm6w43tdTb5S6K0A2vjFlbQ80rX-TzHH26a7_t7__IQ-JjsTn84E4zP64EYbaH3O4YDTkd5Eg1Orx6Dy8HWsGsE30HZjNPyGu1UseMGX1W_38Bd3dQUZ7LgDCZI1hvgtHrjYd9XEECNOrVqHW-hnt3NzfkESzwIx4ThPCS9NwNF7pjRwCFFhSpszaZgVpROKW8doqYPl16ZeSU191rZeZFbkVMgyc9l22LXHkdtBWObecSmtkbnmXpm8VNS6lmLCcG_bZQMdzbe6MKkJOXBhPBTgjARgCgCmoEUEpoEOF7PHs-Ybr8zbAtSKsFRdMPBiWxQKbhtof45RkY5mGF8AtPv28B5aY-BcQ-6K2EfL08mz-4JWzZ9pVU-aaOWs0-sPmtGJb0a5C9_636_6d_8AX1fgeQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbhMxFL0qBQk2lEcRgQJe0BUyzdiOPUZCqIJGrRIiVALqznj8qAaqNGQCqD_FN-LrzERICHZdsLZlecZH92Hfew7A0-h8KYXkVEZrqQheUy20otr5wD33fZu1Dj-O1WRSnpzodxvws-uFwbLKziZmQ-3PHd6R76XQlzOMJuSr-VeKqlH4utpJaKxgMQoXP1LK1rw8epPOd5ex4cH09SFtVQWoS-BdUlG5tOsYmbaomFNIV_mSKce8rILUwgdWVDbFOYMiamWLyAc-Su5lWUhV8cDTulfgquClQq7-kaLrVwst2Kr1Tkmq1UC1hfbJY-59tvXieYFcDmj9f3OBmzPb2D8cQfZuw63_7b_cgpttHE32V8C_DRthdge2Oo0K0pqsu3C87-0cTTp5n7tiyBRpRWanL8iwzg09ZFx_CWcXZGhrrNAnB1gA2hC8nybHIfPKunyFSloq2tNt-HApX3YvndL5LNwHosoYhFLeqdKKqF1Z6cKHvmbSiegHVQ-edUdrXEuyjlofZwaTrQQEg0AwhclA6MHuevZ8RS7yl3nbiBKTlmoMwyy9X2BDcQ92OkyY1vSk8TUgHvx7-AlcP5y-HZvx0WT0EG6kdTODJZM7sLlcfAuP4Jr7vqybxeOMcgKfLhs-vwA6YjqV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=The+Journal+of+artificial+intelligence+research&rft.atitle=Adaptive+Stress+Testing%3A+Finding+Likely+Failure+Events+with+Reinforcement+Learning&rft.au=Lee%2C+Ritchie&rft.au=Mengshoel%2C+Ole+J.&rft.au=Saksena%2C+Anshu&rft.au=Gardner%2C+Ryan+W.&rft.date=2020-12-06&rft.pub=AI+Access+Foundation%2C+Inc&rft.issn=1076-9757&rft.eissn=1943-5037&rft.volume=69&rft_id=info:doi/10.1613%2Fjair.1.12190&rft.externalDBID=CYI&rft.externalDocID=20210018655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon