Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising
Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs, and have found widespread application in the solving of a variety of complex real-world problems. It boasts enticing features as well as remark...
Uloženo v:
| Vydáno v: | Electronics (Basel) Ročník 11; číslo 10; s. 1590 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.05.2022
|
| Témata: | |
| ISSN: | 2079-9292, 2079-9292 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs, and have found widespread application in the solving of a variety of complex real-world problems. It boasts enticing features as well as remarkable data processing capabilities. In this paper, a comprehensive overview of the backpropagation algorithm for digital image denoising was discussed. Then, we presented a probabilistic analysis of how different algorithms address this challenge, arguing that small ANNs can denoise small-scale texture patterns almost as effectively as their larger equivalents. The results also show that self-similarity and ANNs are complementary paradigms for patch denoising, as demonstrated by an algorithm that effectively complements BM3D with small ANNs, surpassing BM3D at a low cost. Here, one of the most significant advantages of this learning technique is that, once taught, digital images may be recovered without prior knowledge of the degradation model (noise/blurring) that caused the digital image to become distorted. |
|---|---|
| AbstractList | Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs, and have found widespread application in the solving of a variety of complex real-world problems. It boasts enticing features as well as remarkable data processing capabilities. In this paper, a comprehensive overview of the backpropagation algorithm for digital image denoising was discussed. Then, we presented a probabilistic analysis of how different algorithms address this challenge, arguing that small ANNs can denoise small-scale texture patterns almost as effectively as their larger equivalents. The results also show that self-similarity and ANNs are complementary paradigms for patch denoising, as demonstrated by an algorithm that effectively complements BM3D with small ANNs, surpassing BM3D at a low cost. Here, one of the most significant advantages of this learning technique is that, once taught, digital images may be recovered without prior knowledge of the degradation model (noise/blurring) that caused the digital image to become distorted. |
| Author | Alarfaj, Maryam Singh, Abha Kushwaha, Sumit Singh, Manoj |
| Author_xml | – sequence: 1 givenname: Abha orcidid: 0000-0003-2706-5982 surname: Singh fullname: Singh, Abha – sequence: 2 givenname: Sumit orcidid: 0000-0002-3830-1736 surname: Kushwaha fullname: Kushwaha, Sumit – sequence: 3 givenname: Maryam surname: Alarfaj fullname: Alarfaj, Maryam – sequence: 4 givenname: Manoj surname: Singh fullname: Singh, Manoj |
| BookMark | eNp9kE1PAjEQhhuDiYj8Ai9NPK9O2_2gRwQ_SEi46HlTynQp7rZru2D89y7BgzHGucwk8z7z8V6SgfMOCblmcCuEhDusUXfBO6sjYwxYJuGMDDkUMpFc8sGP-oKMY9xBH5KJiYAhWc180wbcoov2gHR1wHCw-EG9ofdKv7XBt6pSnfWOTuvKB9ttG2p8oHNb2U7VdNGoCukcnbfRuuqKnBtVRxx_5xF5fXx4mT0ny9XTYjZdJlpw3iVCa5S6MDoFk6cqV_kaFCsyJY3mAJncCM1RbdJMZ2vI1KRvQAZQMJykm1SLEbk5ze0vfN9j7Mqd3wfXryx5XgDjKRRFrxInlQ4-xoCmbINtVPgsGZRH88o_zOsp-YvS_atHD7qgbP0v-wV5nnu0 |
| CitedBy_id | crossref_primary_10_3390_electronics14010145 crossref_primary_10_1109_ACCESS_2024_3398786 crossref_primary_10_3390_app13085102 crossref_primary_10_3390_en17163932 crossref_primary_10_3390_rs15123095 crossref_primary_10_3390_electronics13040746 crossref_primary_10_3390_en18020299 crossref_primary_10_1364_OE_549904 crossref_primary_10_1007_s10668_023_04257_y crossref_primary_10_1177_14604582241295912 crossref_primary_10_1111_ijfs_17298 crossref_primary_10_3390_app13031837 crossref_primary_10_3390_ph16111509 crossref_primary_10_3390_math11132975 crossref_primary_10_1007_s40819_025_01865_2 crossref_primary_10_1016_j_asoc_2023_110958 crossref_primary_10_1088_2515_7620_ad8109 crossref_primary_10_3390_mi13101644 crossref_primary_10_1142_S0219467825500160 crossref_primary_10_1007_s00530_024_01284_1 crossref_primary_10_3390_info14090507 crossref_primary_10_1142_S0219467825500329 crossref_primary_10_1007_s43217_023_00124_y crossref_primary_10_1016_j_mser_2025_101095 crossref_primary_10_1016_j_eswa_2025_128351 crossref_primary_10_3390_su15129623 crossref_primary_10_3390_math11102260 |
| Cites_doi | 10.13005/bpj/1240 10.1109/TIP.2010.2073477 10.1007/s10278-018-0110-y 10.3390/rs13142771 10.1016/j.neunet.2019.04.024 10.2174/1573405614666180801113345 10.1109/TCSVT.2019.2951778 10.1016/j.isatra.2019.11.008 10.1109/TIP.2022.3162961 10.1007/3-540-49430-8_2 10.1109/79.581363 10.1109/CVPR.2011.5995309 10.1049/iet-ipr.2019.0157 10.13005/bpj/1175 10.1016/S0167-7012(00)00201-3 10.21236/AD0256582 10.1515/bmt-2018-0101 10.1109/ACCESS.2019.2930319 10.13005/bpj/1171 10.1002/9780470512517 10.1117/1.JEI.28.1.013011 10.1109/LGRS.2020.2993899 10.1109/TIP.2006.881969 10.4066/biomedicalresearch.29-18-853 10.3390/app11209616 10.1007/s10044-019-00845-9 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SP 8FD 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO HCIFZ L7M P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.3390/electronics11101590 |
| DatabaseName | CrossRef Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central SciTech Premium Collection Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2079-9292 |
| ExternalDocumentID | 10_3390_electronics11101590 |
| GroupedDBID | 5VS 8FE 8FG AAYXX ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BGLVJ CCPQU CITATION HCIFZ IAO ITC KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PROAC 7SP 8FD ABUWG AZQEC DWQXO L7M PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c322t-3cce9c7fc40f64a6a6b0a175a9fc20059d3c2ead45c5b05a8a9f050071e84d4c3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000802459600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2079-9292 |
| IngestDate | Fri Jul 25 08:36:44 EDT 2025 Tue Nov 18 20:58:03 EST 2025 Sat Nov 29 07:10:48 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-3cce9c7fc40f64a6a6b0a175a9fc20059d3c2ead45c5b05a8a9f050071e84d4c3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3830-1736 0000-0003-2706-5982 |
| OpenAccessLink | https://www.proquest.com/docview/2670124077?pq-origsite=%requestingapplication% |
| PQID | 2670124077 |
| PQPubID | 2032404 |
| ParticipantIDs | proquest_journals_2670124077 crossref_primary_10_3390_electronics11101590 crossref_citationtrail_10_3390_electronics11101590 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-05-01 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Electronics (Basel) |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Protter (ref_10) 2010; 18 Yang (ref_2) 2019; 7 Thakur (ref_4) 2019; 13 Kushwaha (ref_33) 2015; 3 Banhom (ref_1) 1997; 14 ref_13 ref_35 ref_12 Kushwaha (ref_26) 2016; 4 ref_32 Bouwmans (ref_5) 2019; 117 ref_31 Zhang (ref_7) 2021; 18 Zhang (ref_8) 2022; 19 ref_18 ref_39 Kushwaha (ref_22) 2017; 10 Deepa (ref_23) 2013; 2013 Dao (ref_37) 2002; 10 Kushwaha (ref_16) 2019; 64 Kumar (ref_38) 2020; 16 Lim (ref_34) 2020; 23 Zeng (ref_27) 2019; 28 Elad (ref_14) 2006; 15 ref_24 Kushwaha (ref_25) 2017; 10 Kushwaha (ref_20) 2017; 10 Zhang (ref_6) 2022; 60 ref_21 Zhao (ref_28) 2022; 31 ref_40 Kushwaha (ref_9) 2015; 3 Zhao (ref_11) 2020; 30 Luisier (ref_19) 2011; 20 Asokan (ref_30) 2020; 100 ref_3 Basheer (ref_29) 2000; 43 Kushwaha (ref_17) 2018; 29 Chang (ref_36) 2019; 32 Kushwaha (ref_15) 2022; 35 |
| References_xml | – volume: 10 start-page: 1355 year: 2017 ident: ref_20 article-title: An Efficient Filtering Approach for Speckle Reduction in Ultrasound Images publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1240 – volume: 20 start-page: 696 year: 2011 ident: ref_19 article-title: Image denoising in mixed poisson—gaussian noise publication-title: IEEE Trans. Image Process. (TIP) doi: 10.1109/TIP.2010.2073477 – ident: ref_32 – ident: ref_3 – volume: 32 start-page: 148 year: 2019 ident: ref_36 article-title: An Automatic Parameter Decision System of Bilateral Filtering with GPU-Based Acceleration for Brain MR Images publication-title: J. Digit. Imaging doi: 10.1007/s10278-018-0110-y – ident: ref_12 doi: 10.3390/rs13142771 – volume: 18 start-page: 842 year: 2010 ident: ref_10 article-title: Image Sequence Denoising via Sparse and Redundant Representations publication-title: IEEE Trans. Image Process. – volume: 117 start-page: 8 year: 2019 ident: ref_5 article-title: Deep neural network concepts for background subtraction:A systematic review and comparative evaluation publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.04.024 – volume: 16 start-page: 278 year: 2020 ident: ref_38 article-title: A Comprehensive Review on Nature Inspired Neural Network based Adaptive Filter for Eliminating Noise in Medical Images publication-title: Curr. Med. Imaging doi: 10.2174/1573405614666180801113345 – volume: 3 start-page: 15 year: 2015 ident: ref_33 article-title: Study and Analysis of Various Image Enhancement Method using MATLAB publication-title: Int. J. Comput. Sci. Eng. – volume: 4 start-page: 152 year: 2016 ident: ref_26 article-title: Mathematical Analysis of Robust Anisotropic Diffusion Filter for Ultrasound Images publication-title: Int. J. Comput. Sci. Eng. – volume: 30 start-page: 4192 year: 2020 ident: ref_11 article-title: Dynamic Deep Pixel Distribution Learning for Background Subtraction publication-title: IEEE Trans. Circuits Syst. Video Technol. doi: 10.1109/TCSVT.2019.2951778 – volume: 100 start-page: 308 year: 2020 ident: ref_30 article-title: Adaptive Cuckoo Search based optimal bilateral filtering for denoising of satellite images publication-title: ISA Trans. doi: 10.1016/j.isatra.2019.11.008 – volume: 31 start-page: 2934 year: 2022 ident: ref_28 article-title: Universal Background Subtraction Based on Arithmetic Distribution Neural Network publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3162961 – ident: ref_18 – ident: ref_35 – ident: ref_13 doi: 10.1007/3-540-49430-8_2 – volume: 2013 start-page: 11 year: 2013 ident: ref_23 article-title: Review on methods to fix number of hidden neurons in ANNs publication-title: Math. Probl. Eng. – volume: 3 start-page: 2347 year: 2015 ident: ref_9 article-title: Study of Various Image Noises and Their Behavior publication-title: Int. J. Comput. Sci. Eng. – volume: 14 start-page: 24 year: 1997 ident: ref_1 article-title: Digital Image Denoising publication-title: IEEE Signal Process. Mag. doi: 10.1109/79.581363 – ident: ref_21 doi: 10.1109/CVPR.2011.5995309 – volume: 10 start-page: 201 year: 2002 ident: ref_37 article-title: A performance comparison of different back propagation ANNs methods in computer network intrusion detection publication-title: Differ. Equ. Dyn. Syst. – volume: 13 start-page: 2367 year: 2019 ident: ref_4 article-title: State-of-art analysis of image denoising methods using convolutional neural networks publication-title: IET Image Process. doi: 10.1049/iet-ipr.2019.0157 – volume: 10 start-page: 837 year: 2017 ident: ref_22 article-title: Performance Comparison of Different Despeckled Filters for Ultrasound Images publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1175 – ident: ref_31 – volume: 43 start-page: 3 year: 2000 ident: ref_29 article-title: Artificial ANNs: Fundamentals, computing, design, and application publication-title: ELSEVIER J. Microbiol. Methods doi: 10.1016/S0167-7012(00)00201-3 – volume: 19 start-page: 4019905 year: 2022 ident: ref_8 article-title: Squeeze-and-Excitation Laplacian Pyramid Network with Dual-Polarization Feature Fusion for Ship Classification in SAR Images publication-title: IEEE Geosci. Remote Sens. Lett. – ident: ref_24 doi: 10.21236/AD0256582 – volume: 64 start-page: 601 year: 2019 ident: ref_16 article-title: Optimization of the proposed hybrid denoising technique to overcome over-filtering issue publication-title: Biomed. Eng. Biomed. Tech. doi: 10.1515/bmt-2018-0101 – volume: 7 start-page: 97949 year: 2019 ident: ref_2 article-title: End-to-End Background Subtraction via a Multi-Scale Spatio-Temporal Model publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2930319 – volume: 10 start-page: 805 year: 2017 ident: ref_25 article-title: An Efficient Approach for Denoising Ultrasound Images using Anisotropic Diffusion and Teaching Learning Based Optimization publication-title: Biomed. Pharmacol. J. doi: 10.13005/bpj/1171 – ident: ref_39 doi: 10.1002/9780470512517 – volume: 28 start-page: 013011 year: 2019 ident: ref_27 article-title: Combining background subtraction algorithms with convolutional neural network publication-title: J. Electron. Imaging doi: 10.1117/1.JEI.28.1.013011 – volume: 18 start-page: 1234 year: 2021 ident: ref_7 article-title: ShipDeNet-20: An Only 20 Convolution Layers and <1-MB Lightweight SAR Ship Detector publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2993899 – volume: 15 start-page: 3736 year: 2006 ident: ref_14 article-title: Image Denoising Via Sparse and Redundant Representations over Learned Dictionaries publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2006.881969 – volume: 35 start-page: 105 year: 2022 ident: ref_15 article-title: IoT with AI: Requirements and Challenges publication-title: Gorteria – volume: 29 start-page: 3444 year: 2018 ident: ref_17 article-title: Robust denoising technique for ultrasound images by splicing of low rank filter and principal component analysis publication-title: Biomed. Res. doi: 10.4066/biomedicalresearch.29-18-853 – ident: ref_40 doi: 10.3390/app11209616 – volume: 60 start-page: 5210322 year: 2022 ident: ref_6 article-title: HOG-ShipCLSNet: A Novel Deep Learning Network with HOG Feature Fusion for SAR Ship Classification publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 23 start-page: 1369 year: 2020 ident: ref_34 article-title: Learning multi-scale features for foreground segmentation publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-019-00845-9 |
| SSID | ssj0000913830 |
| Score | 2.4354372 |
| Snippet | Artificial ANNs (ANNs) are relatively new computational tools used in the development of intelligent systems, some of which are inspired by biological ANNs,... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1590 |
| SubjectTerms | Algorithms Back propagation Blurring Data processing Digital imaging Neural networks Neurons Noise Noise reduction Probabilistic analysis Self-similarity Signal processing Software |
| Title | Comprehensive Overview of Backpropagation Algorithm for Digital Image Denoising |
| URI | https://www.proquest.com/docview/2670124077 |
| Volume | 11 |
| WOSCitedRecordID | wos000802459600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: P5Z dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2079-9292 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913830 issn: 2079-9292 databaseCode: PIMPY dateStart: 20120301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEJ6IeNCDb-MDyR482lDa3T5OBgQiB6AxmqCXpsxugchDAfXmb3e2lIeJ8eK12802nZlvHp3OB3DlFVXHtCUavqdsg7siNjwyLANjV2LMXY5WJyGbcJtNr932g7TgNk3bKheYmAC1HKOukRcsxyUspfTDvXl9MzRrlP66mlJoZCCrpyRo6oZAPC9rLHrmpWeb82FDNmX3hRW3zJSMnFyhxuJ1h_QTjxMnU9v77-Ptw24aXrLSXB8OYEONDmFnbejgEbQ0BExUb965zlofGi3UJxvHrBzhC51LGJPIi5UGXTpj1hsyCm1Zpd_VDCOsPiQMYhU1Gvd1oeEYHmvVh9s7I6VVMJCsd2bYiMpHN0Zuxg6PnMjpmBFFEZEfo64x-dJGixSMCxQdU0QeLZhCxyLK45KjfQKbo_FInQJTZqR86QhJcQ0XhJ2ehehHtEEIIWXxDKzFuw0xnTmuqS8GIeUeWiDhLwI5g-vlptf5yI2_b88tJBKm9jcNV-I4_3v5ArYt_UND0sKYg83Z5F1dwhZ-zPrTSR6y5WozuM9DpvFVzSfKRdeCeiN4-gYV5tx5 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LLwRBEK6sJcHBW6xnH7iZaD3d8ziIYIkNlgOJuIzZ6h427MPuIv6U36h6ZmeRiJuDc09PUt3ffFVdU10fwHqwbWrc1eiEgXEd6avECejDcjDxNSbSlyhqqdiEX60G19fhRQHe87swtqwy58SUqHULbY58S3g-cSkdP_zd9pNjVaPs39VcQiODxYl5e6UjW3enUqb93RDi6PDy4Njpqwo4SODtOS6iCdFPUPLEk7EXezUekxONwwRtiiXULgpaX6lQ1biKAxrgyrpiE0gt0aX3DsGwlILbXv0X6maQ07E9NgOXZ82NXDfkW59aNl0iFXK9lvu_OsDv_J86taPJ_7YcUzDRD5_ZXob3aSiY5gyMf2mqOAvnluI65j6rzGfnL5YNzStrJWw_xgeykzg0xSPbe7wjm3r3DUahOyvX76yCCqs0iGNZ2TRbdZtImYOrP7FoHorNVtMsADM8NqH2lKa4TSryDYFADGOaoJTSersEIt_LCPs91a20x2NEZysLgOgHAJRgczCpnbUU-f3x5RwBUZ9futHn9i_-PrwGo8eXZ6fRaaV6sgRjwl7eSMs1l6HY6zybFRjBl16921lNoczg9q_B8gHtezYI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB0BRQgO7IilgA9wI2oa21kOCBVKRQWUHkCCU0jHDlRAC22h4tf4OsZZWCTEjQPnxJFsP783MxnPAGz5Zd2yuUIr8DW3hCdjy6eDZWHsKYyFJ9BpJc0mvEbDv7wMmiPwlt-FMWmVOScmRK26aGLkJcf1iEvJ_fBKcZYW0azW9h6fLNNByvxpzdtppBA51q9Dct_6u_Uq7fW249QOzw-OrKzDgIUE5IHFEXWAXozCjl0RuZHbsiMS1CiI0YRbAsXRobUWEmXLlpFPD2xpZFn7Qgnk9N1RKJBJzsnxKzTrp82rjwiPqbjpczstdcR5YJc-O9v0iWJIiI0SfJXD72qQSFxt5j8vzixMZ4Y1q6QnYQ5GdGcepr6UW1yAM0N-PX2b5uyzsxfDk3rIujHbj_CO5kzsmiCVVe5vaE6D2wdGRj2rtm9MbxVWfyD2ZVXd6bZNiGURLv5kRksw1ul29DIwbUc6UK5UZNEJSarhO4hBRAOklEqVV8DJ9zXErNq6afpxH5LXZcAQ_gCGFdj5GPSYFhv5_fVijoYwY55--AmF1d8fb8IEYSQ8qTeO12DSMbc6kjzOIowNes96HcbxZdDu9zYyXDO4_mu0vAMjDkA4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comprehensive+Overview+of+Backpropagation+Algorithm+for+Digital+Image+Denoising&rft.jtitle=Electronics+%28Basel%29&rft.au=Singh%2C+Abha&rft.au=Kushwaha%2C+Sumit&rft.au=Alarfaj%2C+Maryam&rft.au=Singh%2C+Manoj&rft.date=2022-05-01&rft.pub=MDPI+AG&rft.eissn=2079-9292&rft.volume=11&rft.issue=10&rft.spage=1590&rft_id=info:doi/10.3390%2Felectronics11101590&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2079-9292&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2079-9292&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2079-9292&client=summon |