Systematic Data Placement Optimization in Multi-Cloud Storage for Complex Requirements

Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud stora...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on computers Jg. 65; H. 6; S. 1964 - 1977
Hauptverfasser: Su, Maomeng, Zhang, Lei, Wu, Yongwei, Chen, Kang, Li, Keqin
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9340, 1557-9956
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in μLibCloud. For complex requirements, Triones can improve fault-tolerance level by 2× and reduce access latency and vendor lock-in level by 30~70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia.
AbstractList Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in $\mu$[formula graphic omitted, see PDF] LibCloud. For complex requirements, Triones can improve fault-tolerance level by 2 $\times$ [formula graphic omitted, see PDF] and reduce access latency and vendor lock-in level by 30$\sim$ [formula graphic omitted, see PDF]70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia.
Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in μLibCloud. For complex requirements, Triones can improve fault-tolerance level by 2× and reduce access latency and vendor lock-in level by 30~70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia.
Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in [Formula Omitted]LibCloud. For complex requirements, Triones can improve fault-tolerance level by 2[Formula Omitted] and reduce access latency and vendor lock-in level by 30[Formula Omitted]70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia.
Author Lei Zhang
Keqin Li
Maomeng Su
Yongwei Wu
Kang Chen
Author_xml – sequence: 1
  givenname: Maomeng
  surname: Su
  fullname: Su, Maomeng
– sequence: 2
  givenname: Lei
  surname: Zhang
  fullname: Zhang, Lei
– sequence: 3
  givenname: Yongwei
  surname: Wu
  fullname: Wu, Yongwei
– sequence: 4
  givenname: Kang
  surname: Chen
  fullname: Chen, Kang
– sequence: 5
  givenname: Keqin
  surname: Li
  fullname: Li, Keqin
BookMark eNp9kDFP3DAUgK0KpN4dzB26WOrSJcezHTv2WKWlIIFAcOpq-WynMkriO9uRevz6Bg51YOj0hvd9T0_fEp2McfQIfSKwJgTUxaZdUyB8TWtBJSUf0IJw3lRKcXGCFgBEVorV8BEtc34CAEFBLdCvx0MufjAlWPzdFIPve2P94MeC73YlDOF5XsURhxHfTn0JVdvHyeHHEpP57XEXE27jsOv9H_zg91NIr24-Q6ed6bM_f5srtLn8sWmvqpu7n9ftt5vKMkpLRUXjSK26hhFGraO1UdbxjgpnOSgAJqXrnN3WhFDHmYOaK1ELufWCbx1lK_T1eHaX4n7yueghZOv73ow-TlkTSQQwJkDO6Jd36FOc0jg_p0kjJbBGUjFT_EjZFHNOvtM2lNcCJZnQawL6JbbetPoltn6LPXsX77xdCoNJh_8Yn49G8N7_oxvSMJi__QsCFYp3
CODEN ITCOB4
CitedBy_id crossref_primary_10_1155_2017_2376484
crossref_primary_10_1002_ett_4541
crossref_primary_10_1155_2022_6805460
crossref_primary_10_1109_TCC_2023_3287653
crossref_primary_10_1109_TPDS_2023_3306150
crossref_primary_10_1002_cpe_4830
crossref_primary_10_1016_j_procs_2021_05_062
crossref_primary_10_1109_ACCESS_2019_2937511
crossref_primary_10_1109_TSG_2017_2763954
crossref_primary_10_1016_j_jksuci_2020_10_015
crossref_primary_10_1088_1742_6596_2290_1_012096
crossref_primary_10_1109_TII_2022_3179733
crossref_primary_10_1007_s10586_018_2885_5
crossref_primary_10_1109_TMC_2019_2942306
crossref_primary_10_3390_info11060303
crossref_primary_10_1088_1742_6596_2170_1_012010
crossref_primary_10_1016_j_asoc_2019_105649
crossref_primary_10_1016_j_jnca_2018_09_006
crossref_primary_10_3390_s20185392
crossref_primary_10_3390_info9110286
crossref_primary_10_3390_s18093030
crossref_primary_10_1109_TETCI_2019_2910242
crossref_primary_10_1007_s13198_024_02695_z
Cites_doi 10.1145/1807128.1807165
10.1007/s00158-003-0368-6
10.1145/1807128.1807166
10.1145/1653662.1653686
10.1109/SC.2012.101
10.1016/j.future.2013.09.006
10.1137/0108018
10.1145/2535929
10.1109/VISUAL.1993.398868
10.1145/1327452.1327492
10.1109/TIT.1964.1053661
10.1145/2517349.2522730
10.1093/comjnl/7.4.308
10.1016/0305-0548(91)90046-T
10.1109/INFOCOM.2014.6847921
10.1007/978-3-0348-0439-4_18
10.1007/3-540-45748-8_31
10.1109/TC.2013.167
10.1109/TETC.2014.2348196
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TC.2015.2462821
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9956
EndPage 1977
ExternalDocumentID 4051820381
10_1109_TC_2015_2462821
7173008
Genre orig-research
GrantInformation_xml – fundername: Natural Science Foundation of China
  grantid: 61433008; 61373145; 61170210; U1435216
  funderid: 10.13039/501100001809
– fundername: Chinese Special Project of Science and Technology
  grantid: 2013zx01039-002-002
– fundername: National High-Tech R&D (863) Program of China
  grantid: 2013AA01A213
GroupedDBID --Z
-DZ
-~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AETEA
AGQYO
AGSQL
AHBIQ
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
TWZ
UHB
UPT
XZL
YZZ
AAYXX
ABUFD
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c322t-267d149f73132cd24a9cd5f26dc50900388dfdcb4112d53d04596468be65bd23
IEDL.DBID RIE
ISICitedReferencesCount 38
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376879300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9340
IngestDate Sun Sep 28 01:26:36 EDT 2025
Mon Jun 30 03:22:34 EDT 2025
Tue Nov 18 20:53:18 EST 2025
Sat Nov 29 01:35:38 EST 2025
Wed Aug 27 02:49:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords data placement optimization
multi-cloud storage
complex requirements
Systematic model
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-267d149f73132cd24a9cd5f26dc50900388dfdcb4112d53d04596468be65bd23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 1788037826
PQPubID 85452
PageCount 14
ParticipantIDs crossref_citationtrail_10_1109_TC_2015_2462821
proquest_miscellaneous_1816033608
crossref_primary_10_1109_TC_2015_2462821
ieee_primary_7173008
proquest_journals_1788037826
PublicationCentury 2000
PublicationDate 2016-June-1
2016-6-1
20160601
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-June-1
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on computers
PublicationTitleAbbrev TC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
prabhakaran (ref24) 0
ref34
s (ref8) 1960; 8
(ref20) 0
huang (ref36) 0; 12
khan (ref35) 0
ref30
ref33
ref11
ref32
ford (ref22) 0
ref2
ref17
ref19
(ref1) 0
pless (ref10) 2011; 48
rodrigues (ref12) 0
(ref28) 0
(ref26) 0
t (ref15) 2004; 26
ref23
mu (ref6) 0
bertsekas (ref16) 1999
granvilliers (ref31) 1998; 4
s (ref14) 1991; 18
(ref29) 0
ref7
ref9
ref4
ref3
ref5
a (ref18) 1965; 7
(ref27) 0
(ref21) 0
(ref25) 0
References_xml – ident: ref2
  doi: 10.1145/1807128.1807165
– volume: 26
  start-page: 369
  year: 2004
  ident: ref15
  article-title: Survey of multi-objective optimization methods for engineering
  publication-title: Struct Multidisciplinary Optimization
  doi: 10.1007/s00158-003-0368-6
– start-page: 251
  year: 0
  ident: ref35
  article-title: Rethinking erasure codes for cloud file systems: Minimizing I/O for recovery and degraded reads
  publication-title: Proc 10th USENIX Conf File Storage Technol
– year: 1999
  ident: ref16
  publication-title: Nonlinear Programming
– ident: ref23
  doi: 10.1145/1807128.1807166
– ident: ref4
  doi: 10.1145/1653662.1653686
– ident: ref7
  doi: 10.1109/SC.2012.101
– ident: ref33
  doi: 10.1016/j.future.2013.09.006
– start-page: 201
  year: 0
  ident: ref6
  article-title: $\mu$ libcloud: Providing high available and uniform accessing to multiple cloud storages
  publication-title: Proc ACM/IEEE 13th Int Conf Grid Comput
– year: 0
  ident: ref21
– year: 0
  ident: ref1
– volume: 8
  start-page: 300
  year: 1960
  ident: ref8
  article-title: Polynomial codes over certain finite fields
  publication-title: J Soc Ind Appl Math
  doi: 10.1137/0108018
– year: 0
  ident: ref20
– start-page: 61
  year: 0
  ident: ref22
  article-title: Availability in globally distributed storage systems
  publication-title: Proc 9th USENIX Symp Operating Syst Des Implementation
– ident: ref5
  doi: 10.1145/2535929
– ident: ref19
  doi: 10.1109/VISUAL.1993.398868
– ident: ref30
  doi: 10.1145/1327452.1327492
– ident: ref9
  doi: 10.1109/TIT.1964.1053661
– ident: ref13
  doi: 10.1145/2517349.2522730
– volume: 7
  start-page: 308
  year: 1965
  ident: ref18
  article-title: A simplex method for function minimization
  publication-title: Comput J
  doi: 10.1093/comjnl/7.4.308
– volume: 18
  start-page: 97
  year: 1991
  ident: ref14
  article-title: Interactive multiple objective optimization: Survey I - continuous case
  publication-title: Comput Operations Res
  doi: 10.1016/0305-0548(91)90046-T
– year: 0
  ident: ref25
– volume: 48
  year: 2011
  ident: ref10
  publication-title: Introduction to the Theory of Error-Correcting Codes
– year: 0
  ident: ref26
– ident: ref32
  doi: 10.1109/INFOCOM.2014.6847921
– volume: 4
  start-page: 125
  year: 1998
  ident: ref31
  article-title: A symbolic-numerical branch and prune algorithm for solving non-linear polynomial systems
  publication-title: J Universal Comput Sci
– volume: 12
  start-page: 2
  year: 0
  ident: ref36
  article-title: Erasure coding in windows azure storage
  publication-title: Proc Annu Conf USENIX Ann Tech Conf
– start-page: 105
  year: 0
  ident: ref24
  article-title: Analysis and evolution of journaling file systems
  publication-title: Proc General Track USENIX Annual Technical Conf
– ident: ref17
  doi: 10.1007/978-3-0348-0439-4_18
– year: 0
  ident: ref29
– ident: ref11
  doi: 10.1007/3-540-45748-8_31
– start-page: 226
  year: 0
  ident: ref12
  article-title: High availability in DHTs: Erasure coding vs. replication
  publication-title: Proc 4th Int Conf Peer-to-Peer Syst
– year: 0
  ident: ref28
– year: 0
  ident: ref27
– ident: ref3
  doi: 10.1109/TC.2013.167
– ident: ref34
  doi: 10.1109/TETC.2014.2348196
SSID ssj0006209
Score 2.368595
Snippet Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1964
SubjectTerms Cloud computing
Coding
complex requirements
Cost engineering
data placement optimization
Data storage
Encoding
Fault tolerance
Fault tolerant systems
Linear programming
Mathematical models
multi-cloud storage
Optimization
Placement
Systematic model
Systematics
Title Systematic Data Placement Optimization in Multi-Cloud Storage for Complex Requirements
URI https://ieeexplore.ieee.org/document/7173008
https://www.proquest.com/docview/1788037826
https://www.proquest.com/docview/1816033608
Volume 65
WOSCitedRecordID wos000376879300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9956
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006209
  issn: 0018-9340
  databaseCode: RIE
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3LSsNAcNDiQQ8-WsX4YgUPHkxNNskme5SqeNKiRXoLye4GhJpKH-LnO7PdBkU9eAtkdidkdl47L4CzOI2RhWTlVxFP_FglyFIRL30TydBoPBBRWNhhE-n9fTYcyv4KXDS1MMYYm3xmuvRoY_l6rOZ0VXZJEWNb2buapumiVquRumKZzhEStjhwbXzCQF4OepTClXQ51WHy8JsGsiNVfshhq1xut_73Wduw6YxIdrWg-g6smLoNW8sBDczxaxs2vnQb7MDzU9O1mV0Xs4L16Qqd9mYPKDheXUUme6mZLcv1e6PxXLMn9MpR6DC0bhmhGJkP9mgogdiune7C4PZm0Lvz3VgFXyH3znwuUo1-UZVS10aleVxIpZOKC63QeqBQYaYrrcoYTTGdRBqNPilikZVGJKXm0R606nFt9oFJCgIKVeogq2Kd8EIHvJJGotI3BeeZB93ln86VazlOky9GuXU9ApkPejmRJnek8eC8WfC26LbxN2iHKNGAOSJ4cLQkZe64cZqH6OcHEdpCwoPT5jXyEQVHitqM5wiT0cDtSATZwe87H8I64heLNLEjaM0mc3MMa-p99jKdnNjD-AmlXtre
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Na9sw9FGywrbD0jUby5Z2KvTQw5zasqxYx5I2pKxLy2JGbsaWZChkTmmSsp-_9xTFtHQ79Gbw0wd6el96XwDHYiCQhFQVVDFPAqETJKmYl4GNVWQNXog4KlyzicFkks5m6mYHvjW5MNZaF3xm-_TpfPlmodf0VHZKHmOX2fsqEYJHm2ythu_KbUBHROuJ0BfyiUJ1mg0piCvpc8rE5NETGeSaqjzjxE68jNov29gevPNqJDvb4P097Nh6H9rbFg3MU-w-vH1Ub7ADv6ZN3WZ2XqwKdkOP6DQ3u0bW8dvnZLLbmrnE3GA4X6wNm6JdjmyHoX7LaIm5_cN-WgohdmOXHyAbXWTDceAbKwQa6XcVcDkwaBlVA6rbqA0XhdImqbg0GvUHchampjK6FKiMmSQ2qPYpKWRaWpmUhscfoVUvavsJmCI3oNSlCdNKmIQXJuSVsgrFvi04T7vQ3550rn3Rcep9Mc-d8RGqPBvmhJrco6YLJ82Au029jf-DdggTDZhHQhd6W1Tmnh6XeYSWfhijNiS7cNT8Rkoi90hR28UaYVJquR3LMP3875m_wutx9uMqv7qcfP8Cb3AvchM01oPW6n5tD2BXP6xul_eH7mL-BS5h3iU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Data+Placement+Optimization+in+Multi-Cloud+Storage+for+Complex+Requirements&rft.jtitle=IEEE+transactions+on+computers&rft.au=Su%2C+Maomeng&rft.au=Zhang%2C+Lei&rft.au=Wu%2C+Yongwei&rft.au=Chen%2C+Kang&rft.date=2016-06-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9340&rft.eissn=1557-9956&rft.volume=65&rft.issue=6&rft.spage=1964&rft_id=info:doi/10.1109%2FTC.2015.2462821&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=4051820381
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon